
Lior Gepstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4957998/publications.pdf Version: 2024-02-01

LIOD CEDSTEIN

#	Article	lF	CITATIONS
1	Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 2011, 471, 225-229.	13.7	957
2	Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nature Biotechnology, 2004, 22, 1282-1289.	9.4	835
3	A Novel Method for Nonfluoroscopic Catheter-Based Electroanatomical Mapping of the Heart. Circulation, 1997, 95, 1611-1622.	1.6	625
4	Transplantation of Human Embryonic Stem Cell-Derived Cardiomyocytes Improves Myocardial Performance in Infarcted Rat Hearts. Journal of the American College of Cardiology, 2007, 50, 1884-1893.	1.2	524
5	Tissue Engineering of Vascularized Cardiac Muscle From Human Embryonic Stem Cells. Circulation Research, 2007, 100, 263-272.	2.0	524
6	Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. Circulation, 2017, 135, 1832-1847.	1.6	462
7	Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells. Circulation, 2009, 120, 1513-1523.	1.6	386
8	Nonfluoroscopic, in vivo navigation and mapping technology. Nature Medicine, 1996, 2, 1393-1395.	15.2	370
9	High-Resolution Electrophysiological Assessment of Human Embryonic Stem Cell-Derived Cardiomyocytes. Circulation Research, 2002, 91, 659-661.	2.0	281
10	Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nature Biotechnology, 2017, 35, 56-68.	9.4	280
11	Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. Journal of Physiology, 2004, 559, 479-496.	1.3	260
12	Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB Journal, 2007, 21, 2551-2563.	0.2	251
13	Derivation and Potential Applications of Human Embryonic Stem Cells. Circulation Research, 2002, 91, 866-876.	2.0	219
14	Transplantation of a Tissue-Engineered Human Vascularized Cardiac Muscle. Tissue Engineering - Part A, 2010, 16, 115-125.	1.6	217
15	In Vitro Electrophysiological Drug Testing Using Human Embryonic Stem Cell Derived Cardiomyocytes. Stem Cells and Development, 2009, 18, 161-172.	1.1	209
16	Modeling of Catecholaminergic Polymorphic Ventricular Tachycardia With Patient-Specific Human-Induced Pluripotent Stem Cells. Journal of the American College of Cardiology, 2012, 60, 990-1000.	1.2	203
17	Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nature Biotechnology, 2015, 33, 750-754.	9.4	191
18	Low-Energy Laser Irradiation Reduces Formation of Scar Tissue After Myocardial Infarction in Rats and Dogs. Circulation, 2001, 103, 296-301.	1.6	170

#	Article	IF	CITATIONS
19	Preliminary Animal and Clinical Experiences Using an Electromechanical Endocardial Mapping Procedure to Distinguish Infarcted From Healthy Myocardium. Circulation, 1998, 98, 1116-1124.	1.6	166
20	Calcium Handling in Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. PLoS ONE, 2011, 6, e18037.	1.1	165
21	Calcium Handling in Human Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells, 2008, 26, 1961-1972.	1.4	163
22	Modeling of Arrhythmogenic Right Ventricular Cardiomyopathy With Human Induced Pluripotent Stem Cells. Circulation: Cardiovascular Genetics, 2013, 6, 557-568.	5.1	153
23	Genome Editing of Isogenic Human Induced Pluripotent Stem Cells Recapitulates Long QT Phenotype for Drug Testing. Journal of the American College of Cardiology, 2014, 64, 451-459.	1.2	149
24	Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes. Nature Communications, 2020, 11, 75.	5.8	148
25	Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters. Stem Cell Reports, 2015, 5, 582-596.	2.3	133
26	Guidance of Radiofrequency Endocardial Ablation With Real-time Three-dimensional Magnetic Navigation System. Circulation, 1997, 96, 2016-2021.	1.6	131
27	Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications. Acta Biomaterialia, 2019, 92, 145-159.	4.1	129
28	Attenuation of infarct size in rats and dogs after myocardial infarction by low-energy laser irradiation. Lasers in Surgery and Medicine, 2001, 28, 204-211.	1.1	121
29	Electromechanical Characterization of Chronic Myocardial Infarction in the Canine Coronary Occlusion Model. Circulation, 1998, 98, 2055-2064.	1.6	112
30	Electrophysiological Modulation of Cardiomyocytic Tissue by Transfected Fibroblasts Expressing Potassium Channels. Circulation, 2002, 105, 522-529.	1.6	105
31	Use of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes in Preclinical Cancer Drug Cardiotoxicity Testing: A Scientific Statement From the American Heart Association. Circulation Research, 2019, 125, e75-e92.	2.0	103
32	Extracellular Vesicles From Epicardial Fat Facilitate Atrial Fibrillation. Circulation, 2021, 143, 2475-2493.	1.6	99
33	Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins. Cardiovascular Research, 2014, 102, 176-187.	1.8	93
34	Electroanatomic mapping of arrhythmogenic right ventricular dysplasia. Journal of the American College of Cardiology, 2001, 38, 2020-2027.	1.2	86
35	Electroanatomical Mapping of the Heart: Basic Concepts and Implications for the Treatment of Cardiac Arrhythmias. PACE - Pacing and Clinical Electrophysiology, 1998, 21, 1268-1278.	0.5	83
36	A combined cell therapy and in-situ tissue-engineering approach for myocardial repair. Biomaterials, 2011, 32, 7514-7523.	5.7	83

#	Article	IF	CITATIONS
37	Hollow Nanoneedle Array and Its Utilization for Repeated Administration of Biomolecules to the Same Cells. ACS Nano, 2012, 6, 4940-4946.	7.3	80
38	In Vivo Assessment of the Electrophysiological Integration and Arrhythmogenic Risk of Myocardial Cell Transplantation Strategies. Stem Cells, 2010, 28, 2151-2161.	1.4	78
39	Modeling Atrial Fibrillation using Human Embryonic Stem Cell-Derived Atrial Tissue. Scientific Reports, 2017, 7, 5268.	1.6	77
40	Human Induced Pluripotent Stem Cell-Derived Cardiac Cell Sheets Expressing Genetically Encoded Voltage Indicator for Pharmacological and Arrhythmia Studies. Stem Cell Reports, 2018, 10, 1879-1894.	2.3	71
41	Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. European Heart Journal, 2013, 34, 1575-1586.	1.0	70
42	A photopolymerizable hydrogel for 3-D culture of human embryonic stem cell-derived cardiomyocytes and rat neonatal cardiac cells. Journal of Molecular and Cellular Cardiology, 2009, 46, 213-224.	0.9	67
43	Reprogramming of telomeric regions during the generation of human induced pluripotent stem cells and subsequent differentiation into fibroblast-like derivatives. Epigenetics, 2011, 6, 63-75.	1.3	67
44	Hemodynamic Evaluation of the Heart With a Nonfluoroscopic Electromechanical Mapping Technique. Circulation, 1997, 96, 3672-3680.	1.6	65
45	Circadian pattern of life-threatening ventricular arrhythmia in patients with sleep-disordered breathing and implantable cardioverter-defibrillators. Heart Rhythm, 2011, 8, 657-662.	0.3	64
46	Modeling Reentry in the Short QTÂSyndrome With Human-Induced Pluripotent Stem Cell–Derived CardiacACell Sheets. Journal of the American College of Cardiology, 2019, 73, 2310-2324.	1.2	64
47	Electrospun Extracellular Matrix: Paving the Way to Tailorâ€Made Natural Scaffolds for Cardiac Tissue Regeneration. Advanced Functional Materials, 2017, 27, 1700427.	7.8	62
48	Activation-Repolarization Coupling in the Normal Swine Endocardium. Circulation, 1997, 96, 4036-4043.	1.6	61
49	Atrial Linear Ablations in Pigs. Circulation, 1999, 100, 419-426.	1.6	60
50	Detailed endocardial mapping accurately predicts the transmural extent of myocardial infarction. Journal of the American College of Cardiology, 2001, 37, 1590-1597.	1.2	56
51	Human embryonic stem cells for myocardial regeneration. Heart Failure Reviews, 2003, 8, 229-236.	1.7	55
52	Differentiation Pathways in Human Embryonic Stem Cell-Derived Cardiomyocytes. Annals of the New York Academy of Sciences, 2005, 1047, 50-65.	1.8	55
53	Controlling the Cellular Organization of Tissue-Engineered Cardiac Constructs. Annals of the New York Academy of Sciences, 2004, 1015, 299-311.	1.8	54
54	Towards Precision Medicine With Human iPSCs for Cardiac Channelopathies. Circulation Research, 2019, 125, 653-658.	2.0	53

#	Article	IF	CITATIONS
55	Cell Therapy for Modification of the Myocardial Electrophysiological Substrate. Circulation, 2008, 117, 720-731.	1.6	51
56	Flecainide therapy suppresses exercise-induced ventricular arrhythmias in patients with CASQ2-associated catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm, 2013, 10, 1671-1675.	0.3	50
57	Human embryonic stem cells for cardiomyogenesis. Journal of Molecular and Cellular Cardiology, 2008, 45, 462-474.	0.9	49
58	Usefulness of electroanatomical mapping to differentiate between right ventricular outflow tract tachycardia and arrhythmogenic right ventricular dysplasia. American Journal of Cardiology, 2005, 95, 935-940.	0.7	43
59	Patient-Specific Drug Screening Using a Human Induced Pluripotent Stem Cell Model of Catecholaminergic Polymorphic Ventricular Tachycardia Type 2. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	2.1	42
60	Calcium Handling in Embryonic Stem Cell-Derived Cardiac Myocytes: Of Mice and Men. Annals of the New York Academy of Sciences, 2006, 1080, 207-215.	1.8	41
61	Uncovering the Role of Hypermethylation by CTG Expansion in Myotonic Dystrophy Type 1ÂUsing Mutant Human Embryonic Stem Cells. Stem Cell Reports, 2015, 5, 221-231.	2.3	40
62	Induced pluripotent stem cells for cardiac repair. Cellular and Molecular Life Sciences, 2012, 69, 3285-3299.	2.4	37
63	Online Myocardial Viability Assessment in the Catheterization Laboratory via NOGA Electroanatomic Mapping. Circulation, 2001, 104, 1005-1011.	1.6	35
64	Potential Applications of Human Embryonic Stem Cell-Derived Cardiomyocytes. Annals of the New York Academy of Sciences, 2004, 1015, 285-298.	1.8	32
65	Cardiac safety pharmacology: from human ether-a-gogo related gene channel block towards induced pluripotent stem cell based disease models. Expert Opinion on Drug Safety, 2012, 11, 285-298.	1.0	31
66	Optogenetics for suppression of cardiac electrical activity in human and rat cardiomyocyte cultures. Neurophotonics, 2015, 2, 1.	1.7	28
67	Making better scar: Emerging approaches for modifying mechanical and electrical properties following infarction and ablation. Progress in Biophysics and Molecular Biology, 2016, 120, 134-148.	1.4	28
68	Polymorphic ventricular tachycardia, ischaemic ventricular fibrillation, and torsade de pointes: importance of the QT and the coupling interval in the differential diagnosis. European Heart Journal, 2021, 42, 3965-3975.	1.0	28
69	Myocardial regeneration strategies using human embryonic stem cell-derived cardiomyocytes. Journal of Controlled Release, 2006, 116, 211-218.	4.8	26
70	Pluripotent Stem Cellâ€Based Platforms in Cardiac Disease Modeling and Drug Testing. Clinical Pharmacology and Therapeutics, 2017, 102, 203-208.	2.3	26
71	Development of Cardiomyocytes from Human ES Cells. Methods in Enzymology, 2003, 365, 461-473.	0.4	25
72	Vascularization shaping the heart. Annals of the New York Academy of Sciences, 2010, 1188, 46-51.	1.8	25

#	Article	IF	CITATIONS
73	Importance of Ventricular Tachycardia Storms Not Terminated by Implantable Cardioverter Defibrillators Shocks in Patients With CASQ2 Associated Catecholaminergic Polymorphic Ventricular Tachycardia. American Journal of Cardiology, 2012, 110, 72-76.	0.7	25
74	Concise Review: Reprogramming Strategies for Cardiovascular Regenerative Medicine: From Induced Pluripotent Stem Cells to Direct Reprogramming. Stem Cells Translational Medicine, 2014, 3, 448-457.	1.6	23
75	Synthetic cells with self-activating optogenetic proteins communicate with natural cells. Nature Communications, 2022, 13, 2328.	5.8	23
76	High-Resolution Optical Mapping of Ventricular Tachycardia in Rats with Chronic Myocardial Infarction. PACE - Pacing and Clinical Electrophysiology, 2010, 33, 687-695.	0.5	22
77	Targeted therapies in genetic dilated and hypertrophic cardiomyopathies: from molecular mechanisms to therapeutic targets. A position paper from the Heart Failure Association (HFA) and the Working Group on Myocardial Function of the European Society of Cardiology (ESC). European Journal of Heart Failure. 2022. 24. 406-420.	2.9	22
78	Three-dimensional endocardial impedance mapping: a new approach for myocardial infarction assessment. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H179-H188.	1.5	19
79	Electrocardiographic Comparison of Ventricular Premature Complexes during Exercise Test in Patients with CPVT and Healthy Subjects. PACE - Pacing and Clinical Electrophysiology, 2015, 38, 398-402.	0.5	18
80	Titin Circular RNAs Create a Back-Splice Motif Essential for SRSF10 Splicing. Circulation, 2021, 143, 1502-1512.	1.6	18
81	Stem cells as biological heart pacemakers. Expert Opinion on Biological Therapy, 2005, 5, 1531-1537.	1.4	17
82	Scalable Production of Cardiomyocytes Derived from c-Myc Free Induced Pluripotent Stem Cells. Tissue Engineering - Part A, 2011, 17, 1027-1037.	1.6	15
83	A combined gene and cell therapy approach for restoration of conduction. Heart Rhythm, 2011, 8, 121-130.	0.3	13
84	Chronic Akt1 Deficiency Attenuates Adverse Remodeling and Enhances Angiogenesis After Myocardial Infarction. Circulation: Cardiovascular Imaging, 2013, 6, 992-1000.	1.3	13
85	Single-Cell Mechanical Analysis of Human Pluripotent Stem Cell-Derived Cardiomyocytes for Drug Testing and Pathophysiological Studies. Stem Cell Reports, 2020, 15, 587-596.	2.3	13
86	Optogenetic modulation of cardiac action potential properties may prevent arrhythmogenesis in short and long QT syndromes. JCI Insight, 2021, 6, .	2.3	13
87	Technical delivery of myogenic cells through an endocardial injection catheter for myocardial cell implantation. International Journal of Cardiovascular Interventions, 2000, 3, 227-230.	0.5	12
88	Triiodothyronine and dexamethasone alter potassium channel expression and promote electrophysiological maturation of human-induced pluripotent stem cell-derived cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2021, 161, 130-138.	0.9	12
89	Cell and gene therapy strategies for the treatment of postmyocardial infarction ventricular arrhythmias. Annals of the New York Academy of Sciences, 2010, 1188, 32-38.	1.8	11
90	Optogenetic Neuromodulation ofÂthe Heart. Journal of the American College of Cardiology, 2017, 70, 2791-2794.	1.2	11

#	Article	IF	CITATIONS
91	Hydrogels for cardiac tissue regeneration. Bio-Medical Materials and Engineering, 2008, 18, 309-14.	0.4	10
92	Electrophysiologic implications of myocardial stem cell therapies. Heart Rhythm, 2008, 5, S48-S52.	0.3	9
93	Robust Fabrication of Composite 3D Scaffolds with Tissue-Specific Bioactivity: A Proof-of-Concept Study. ACS Applied Bio Materials, 2020, 3, 4974-4986.	2.3	9
94	<i>Experimental Molecular and Stem Cell Therapies in Cardiac Electrophysiology</i> . Annals of the New York Academy of Sciences, 2008, 1123, 224-231.	1.8	8
95	Hydrogels for cardiac tissue regeneration. Bio-Medical Materials and Engineering, 2008, 18, 309-314.	0.4	8
96	Specific Therapy Based on the Genotype in a Malignant Form of Long QT3, Carrying the V411M Mutation. International Heart Journal, 2019, 60, 979-982.	0.5	8
97	Accurate Linear Radiofrequency Lesions Guided by a Nonfluoroscopic Electroanatomic Mapping Method During Atrial Fibrillation. PACE - Pacing and Clinical Electrophysiology, 2001, 24, 1672-1678.	0.5	7
98	Electroanatomical mapping and radiofrequency ablation of an accessory pathway associated with a large aneurysm of the coronary sinus. Europace, 2004, 6, 608-612.	0.7	7
99	Cardiovascular Therapeutic Aspects of Cell Therapy and Stem Cells. Annals of the New York Academy of Sciences, 2006, 1080, 415-425.	1.8	7
100	Cardiac optogenetics: the next frontier. Europace, 2018, 20, 1910-1918.	0.7	7
101	Characterization of the mechanism by which a nonsense variant in <i>RYR2</i> leads to disordered calcium handling. Physiological Reports, 2022, 10, e15265.	0.7	7
102	From Gene Therapy and Stem Cells to Clinical Electrophysiology. PACE - Pacing and Clinical Electrophysiology, 2006, 29, 996-1005.	0.5	5
103	Electrophysiological Coupling of Transplanted Cardiomyocytes. Circulation Research, 2007, 101, 433-435.	2.0	5
104	The Third Intron of the Interferon Regulatory Factor-8 Is an Initiator of Repressed Chromatin Restricting Its Expression in Non-Immune Cells. PLoS ONE, 2016, 11, e0156812.	1.1	5
105	Gap junctions, stem cells, and cell therapy: Rhythmic/arrhythmic implications. Heart Rhythm, 2012, 9, 1512-1516.	0.3	4
106	Optogenetic Control of Human Induced Pluripotent Stem Cellâ€Derived Cardiac Tissue Models. Journal of the American Heart Association, 2022, , e021615.	1.6	4
107	Derivation and properties of human embryonic stem cell-derived cardiomyocytes. Gene Therapy and Regulation, 2001, 1, 387-398.	0.3	3
108	Modulation of excessive neuronal activity by fibroblasts: Potential use in treatment of Parkinson's disease. Restorative Neurology and Neuroscience, 2010, 28, 803-815.	0.4	3

#	Article	IF	CITATIONS
109	Insights from the Third Dimension: Cardiac Organoids Help Identify Regenerative Pathways. Cell Stem Cell, 2019, 24, 833-834.	5.2	2
110	Reply to â€~Are atrial human pluripotent stem cell-derived cardiomyocytes ready to identify drugs that beat atrial fibrillation?'. Nature Communications, 2021, 12, 1729.	5.8	2
111	Type of Anemia, Chronic Non-cardiovascular Illnesses, and Outcomes of Patients with ST-segment Elevation Myocardial Infarction. Rambam Maimonides Medical Journal, 2020, 11, e0011.	0.4	2
112	Left Ventricular Systolic Dysfunction Due to Atrial Fibrillation: Clinical and Echocardiographic Predictors. Cardiac Failure Review, 2021, 7, e16.	1.2	2
113	Nonâ€ischemic sudden cardiac arrest: Role of 12 lead Holter, family screening and genetic testing. PACE - Pacing and Clinical Electrophysiology, 2021, 44, 1347-1354.	0.5	1
114	Restoration of heart functions using human embryonic stem cells derived heart muscle cells. Discovery Medicine, 2005, 5, 11-7.	0.5	1
115	Temporal Changes in the Endocardial ST Segment During the Evolution of Myocardial Infarction in Dogs. PACE - Pacing and Clinical Electrophysiology, 2002, 25, 1616-1623.	0.5	0
116	Biologic Pacemakers: Past, Present, and Future. Cardiac Electrophysiology Clinics, 2011, 3, 69-76.	0.7	0
117	Ablation of idiopathic ventricular fibrillation triggered by ventricular premature beat originating from myocardium of right ventricle: Case report. Journal of Cardiology Cases, 2014, 9, 109-112.	0.2	0
118	Using Decellularization/Recellularization Processes to Prepare Liver and Cardiac Engineered Tissues. Methods in Molecular Biology, 2021, 2273, 111-129.	0.4	0
119	ls image integration with preprocedural CT a necessity?. International Journal of Cardiovascular Imaging, 2021, , 1.	0.7	0
120	shRNAs Targeting a Common KCNQ1 Variant Could Alleviate Long-QT1 Disease Severity by Inhibiting a Mutant Allele. International Journal of Molecular Sciences, 2022, 23, 4053.	1.8	0
121	Factors Associated with Left Ventricular Function Recovery in Patients with Atrial Fibrillation Related Cardiomyopathy Israel Medical Association Journal, 2022, 24, 101-106.	0.1	0
122	PO-660-03 OPTICAL CONTROL OF ARRHYTHMIA MORPHOLOGY IN HUMAN INDUCED PLURIPOTENT STEM CELL DERIVED CARDIOMYOCYTE CELL SHEETS. Heart Rhythm, 2022, 19, S282.	0.3	0