
Kazuhisa Goto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4957997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science, 2010, 327, 1214-1218.	6.0	1,140
2	Nationwide Post Event Survey and Analysis of the 2011 Tohoku Earthquake Tsunami. Coastal Engineering Journal, 2012, 54, 1250001-1-1250001-27.	0.7	337
3	New insights of tsunami hazard from the 2011 Tohoku-oki event. Marine Geology, 2011, 290, 46-50.	0.9	271
4	The formation of peak rings in large impact craters. Science, 2016, 354, 878-882.	6.0	181
5	A numerical model for the transport of a boulder by tsunami. Journal of Geophysical Research, 2008, 113, .	3.3	180
6	Distribution, origin and transport process of boulders deposited by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand. Sedimentary Geology, 2007, 202, 821-837.	1.0	169
7	Sediment sources and sedimentation processes of 2011 Tohoku-oki tsunami deposits on the Sendai Plain, Japan — Insights from diatoms, nannoliths and grain size distribution. Sedimentary Geology, 2012, 282, 40-56.	1.0	165
8	Discrimination of boulders deposited by tsunamis and storm waves at Ishigaki Island, Japan. Marine Geology, 2010, 269, 34-45.	0.9	157
9	Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan. Earth-Science Reviews, 2010, 102, 77-99.	4.0	152
10	The reduction effects of mangrove forest on a tsunami based on field surveys at Pakarang Cape, Thailand and numerical analysis. Estuarine, Coastal and Shelf Science, 2009, 81, 27-37.	0.9	145
11	Characteristics and hydrodynamics of boulders transported by storm waves at Kudaka Island, Japan. Marine Geology, 2009, 262, 14-24.	0.9	140
12	Relationship between the maximum extent of tsunami sand and the inundation limit of the 2011 Tohoku-oki tsunami on the Sendai Plain, Japan. Sedimentary Geology, 2012, 282, 142-150.	1.0	127
13	Erosion, deposition and landscape change on the Sendai coastal plain, Japan, resulting from the March 11, 2011 Tohoku-oki tsunami. Sedimentary Geology, 2012, 282, 27-39.	1.0	126
14	Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature, 2018, 558, 288-291.	13.7	123
15	Flow speed estimated by inverse modeling of sandy tsunami deposits: results from the 11 March 2011 tsunami on the coastal plain near the Sendai Airport, Honshu, Japan. Sedimentary Geology, 2012, 282, 90-109.	1.0	107
16	Coastal changes in the Sendai area from the impact of the 2011 TÅhoku-oki tsunami: Interpretations of time series satellite images, helicopter-borne video footage and field observations. Sedimentary Geology, 2012, 282, 151-174.	1.0	103
17	The first day of the Cenozoic. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19342-19351.	3.3	100
18	The future of tsunami research following the 2011 Tohoku-oki event. Sedimentary Geology, 2012, 282, 1-13.	1.0	97

Казиніза Сото

#	Article	IF	CITATIONS
19	Numerical models of tsunami sediment transport — Current understanding and future directions. Marine Geology, 2014, 352, 295-320.	0.9	87
20	Emplacement and movement of boulders by known storm waves — Field evidence from the Okinawa Islands, Japan. Marine Geology, 2011, 283, 66-78.	0.9	83
21	The 2011 Tohoku-oki Earthquake Tsunami: Similarities and Differences to the 869 Jogan Tsunami on the Sendai Plain. Pure and Applied Geophysics, 2013, 170, 831-843.	0.8	75
22	Assessing the magnitude of the 869 Jogan tsunami using sedimentary deposits: Prediction and consequence of the 2011 Tohoku-oki tsunami. Sedimentary Geology, 2012, 282, 14-26.	1.0	74
23	Numerical modeling of the 2011 Tohoku-oki tsunami in the offshore and onshore of Sendai Plain, Japan. Sedimentary Geology, 2012, 282, 110-123.	1.0	74
24	Spatial thickness variability of the 2011 Tohoku-oki tsunami deposits along the coastline of Sendai Bay. Marine Geology, 2014, 358, 38-48.	0.9	74
25	Numerical analysis of boulder transport by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand. Marine Geology, 2010, 268, 97-105.	0.9	70
26	Probing the hydrothermal system of the Chicxulub impact crater. Science Advances, 2020, 6, eaaz3053.	4.7	69
27	Sedimentary processes associated with sand and boulder deposits formed by the 2011 Tohoku-oki tsunami at Sabusawa Island, Japan. Sedimentary Geology, 2012, 282, 188-198.	1.0	68
28	Remarkable bathymetric change in the nearshore zone by the 2004 Indian Ocean tsunami: Kirinda Harbor, Sri Lanka. Geomorphology, 2011, 127, 107-116.	1.1	65
29	A Decade After the 2004 Indian Ocean Tsunami: The Progress in Disaster Preparedness and Future Challenges in Indonesia, Sri Lanka, Thailand and the Maldives. Pure and Applied Geophysics, 2015, 172, 3313-3341.	0.8	65
30	Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364. Earth and Planetary Science Letters, 2018, 495, 1-11.	1.8	65
31	Tsunami recurrence revealed by Porites coral boulders in the southern Ryukyu Islands, Japan. Geology, 2013, 41, 919-922.	2.0	62
32	Catastrophic impact of typhoon waves on coral communities in the Ryukyu Islands under global warming. Journal of Geophysical Research, 2012, 117, .	3.3	54
33	Foraminiferal evidence of submarine sediment transport and deposition by backwash during the 2004 Indian Ocean tsunami. Island Arc, 2009, 18, 513-525.	0.5	51
34	Field measurements and numerical modeling for the run-up heights and inundation distances of the 2011 Tohoku-oki tsunami at Sendai Plain, Japan. Earth, Planets and Space, 2012, 64, 1247-1257.	0.9	48
35	Liquefaction as an important source of the A.D. 2011 Tohoku-oki tsunami deposits at Sendai Plain, Japan. Geology, 2012, 40, 887-890.	2.0	41
36	Sequential radiocarbon measurement of bulk peat for high-precision dating of tsunami deposits. Quaternary Geochronology, 2017, 41, 202-210.	0.6	41

Каzuhisa Goto

#	Article	IF	CITATIONS
37	The 2011 Tohoku-oki tsunami — Three years on. Marine Geology, 2014, 358, 2-11.	0.9	39
38	Deposition of sediments of diverse sizes by the 2011 Tohoku-oki tsunami at Miyako City, Japan. Marine Geology, 2014, 358, 67-78.	0.9	39
39	Localized tsunamigenic earthquakes inferred from preferential distribution of coastal boulders on the Ryukyu Islands, Japan. Geology, 2013, 41, 1139-1142.	2.0	37
40	Uncertainty in Tsunami Sediment Transport Modeling. Journal of Disaster Research, 2016, 11, 647-661.	0.4	37
41	Drainage systems of Lonar Crater, India: Contributions to Lonar Lake hydrology and crater degradation. Planetary and Space Science, 2014, 95, 45-55.	0.9	36
42	Evidence for erosion and deposition by the 2011 Tohoku-oki tsunami on the nearshore shelf of Sendai Bay, Japan. Geo-Marine Letters, 2015, 35, 315-328.	0.5	35
43	Evidence for ocean water invasion into the Chicxulub crater at the Cretaceous/Tertiary boundary. Meteoritics and Planetary Science, 2004, 39, 1233-1247.	0.7	34
44	Large bedform generated by the 2011 Tohoku-oki tsunami at Kesennuma Bay, Japan. Marine Geology, 2013, 335, 200-205.	0.9	33
45	Distribution of boulders at Miyara Bay of Ishigaki Island, Japan: A flow characteristic indicator of tsunami and storm waves. Island Arc, 2010, 19, 412-426.	0.5	31
46	Marine biomarkers deposited on coastal land by the 2011 Tohoku-oki tsunami. Natural Hazards, 2015, 77, 445-460.	1.6	31
47	Dating tsunami deposits: Present knowledge and challenges. Earth-Science Reviews, 2020, 200, 102971.	4.0	31
48	Manganese enrichment in the Gowganda Formation of the Huronian Supergroup: A highly oxidizing shallow-marine environment after the last Huronian glaciation. Earth and Planetary Science Letters, 2011, 307, 201-210.	1.8	29
49	Cretaceous-Tertiary boundary sequence in the Cacarajicara Formation, western Cuba: An impact-related, high-energy, gravity-flow deposit. , 2002, , .		28
50	Numerical identification of tsunami boulders and estimation of local tsunami size at Ibaruma reef of Ishigaki Island, Japan. Island Arc, 2016, 25, 316-332.	0.5	28
51	Paleo-tsunami history along the northern Japan Trench: evidence from Noda Village, northern Sanriku coast, Japan. Progress in Earth and Planetary Science, 2017, 4, .	1.1	28
52	Using magnetic fabric to reconstruct the dynamics of tsunami deposition on the Sendai Plain, Japan — The 2011 Tohoku-oki tsunami. Marine Geology, 2014, 358, 89-106.	0.9	27
53	What is a mega-tsunami?. Marine Geology, 2014, 358, 12-17.	0.9	27
54	Are inundation limit and maximum extent of sand useful for differentiating tsunamis and storms? An example from sediment transport simulations on the Sendai Plain, Japan. Sedimentary Geology, 2018, 364, 204-216.	1.0	27

Казиніза Сото

#	Article	IF	CITATIONS
55	Ten years after the 2011 Tohoku-oki earthquake and tsunami: Geological and environmental effects and implications for disaster policy changes. Earth-Science Reviews, 2021, 212, 103417.	4.0	27
56	Submerged karst landforms observed by multibeam bathymetric survey in Nagura Bay, Ishigaki Island, southwestern Japan. Geomorphology, 2015, 229, 112-124.	1.1	26
57	Erosion of a paleo-tsunami record by the 2011 Tohoku-oki tsunami along the southern Sendai Plain. Marine Geology, 2015, 369, 127-136.	0.9	25
58	Tsunami earthquake can occur elsewhere along the Japan Trench—Historical and geological evidence for the 1677 earthquake and tsunami. Journal of Geophysical Research: Solid Earth, 2016, 121, 3504-3516.	1.4	25
59	Geological evidence and sediment transport modelling for the 1946 and 1960 tsunamis in Shinmachi, Hilo, Hawaii. Sedimentary Geology, 2018, 364, 319-333.	1.0	25
60	Evidence for ocean water invasion into the Chicxulub crater at the Cretaceous/Tertiary boundary. Meteoritics and Planetary Science, 2004, 39, 1233-1247.	0.7	23
61	Lateral lithological and compositional variations of the Cretaceous/Tertiary deep-sea tsunami deposits in northwestern Cuba. Cretaceous Research, 2008, 29, 217-236.	0.6	22
62	Factors responsible for the limited inland extent of sand deposits on <scp>L</scp> eyte <scp>I</scp> sland during 2013 <scp>T</scp> yphoon <scp>H</scp> aiyan. Journal of Geophysical Research: Oceans, 2017, 122, 2795-2812.	1.0	22
63	The current situation of tsunami geology under new policies for disaster countermeasures in Japan. Episodes, 2014, 37, 258-264.	0.8	22
64	Local paleo-tsunami size evaluation using numerical modeling for boulder transport at Ishigaki Island, Japan. Episodes, 2014, 37, 265-276.	0.8	22
65	Reducing the age range of tsunami deposits by 14C dating of rip-up clasts. Sedimentary Geology, 2018, 364, 334-341.	1.0	19
66	Modeling boulder transport by coastal waves on cliff topography: Case study at Hachijo Island, Japan. Earth Surface Processes and Landforms, 2019, 44, 2939-2956.	1.2	19
67	Numerical simulation of the tsunami generated by the 2007 Noto Hanto Earthquake and implications for unusual tidal surges observed in Toyama Bay. Earth, Planets and Space, 2008, 60, 133-138.	0.9	18
68	Numerical assessment of bathymetric changes caused by the 2004 Indian Ocean tsunami at Kirinda Fishery Harbor, Sri Lanka. Coastal Engineering, 2013, 81, 67-81.	1.7	18
69	Complex tsunami waves suggested by the Cretaceous-Tertiary boundary deposit at the Moncada section, western Cuba. , 2002, , .		17
70	Numerical Models for Sediment Transport by Tsunamis. The Quaternary Research, 2007, 46, 463-475.	0.2	17
71	New Zealand's most easterly palaeotsunami deposit confirms evidence for major trans-Pacific event. Marine Geology, 2018, 404, 158-173.	0.9	17
72	Response—Cretaceous Extinctions. Science, 2010, 328, 975-976.	6.0	16

Kazuhisa Goto

#	Article	IF	CITATIONS
73	Osmium evidence for synchronicity between a rise in atmospheric oxygen and Palaeoproterozoic deglaciation. Nature Communications, 2011, 2, 502.	5.8	16
74	Paleomagnetism reveals the emplacement age of tsunamigenic coral boulders on Ishigaki Island, Japan. Geology, 2014, 42, 603-606.	2.0	16
75	Hydrodynamics of impact-induced tsunami over the Martian ocean. Planetary and Space Science, 2014, 95, 33-44.	0.9	16
76	Formation and geomorphologic history of the <scp>L</scp> onar impact crater deduced from in situ cosmogenic ¹⁰ <scp>B</scp> e and ²⁶ <scp>A</scp> l. Geochemistry, Geophysics, Geosystems, 2014, 15, 3190-3197.	1.0	16
77	Further evidence for an impact origin of the Tsenkher structure in the Gobi-Altai, Mongolia: geology of a 3.7 km crater with a well-preserved ejecta blanket. Geological Magazine, 2019, 156, 1-24.	0.9	16
78	Spatial distribution and sources of tsunami deposits in a narrow valley setting - insight from 2011 Tohoku-oki tsunami deposits in northeastern Japan. Progress in Earth and Planetary Science, 2020, 7, .	1.1	16
79	Variations in the 2004 Indian Ocean tsunami deposits thickness and their preservation potential, southwestern Thailand. Earth, Planets and Space, 2012, 64, 923-930.	0.9	15
80	lmpact of Tsunami Inundation on Soil Salinisation: Up to One Year After the 2011 Tohoku-Oki Tsunami. Advances in Natural and Technological Hazards Research, 2014, , 193-214.	1.1	15
81	Non-destructive analyses to determine appropriate stratigraphic level for dating of tsunami deposits. Marine Geology, 2019, 412, 19-26.	0.9	14
82	Paleotsunami research along the Nankai Trough and Ryukyu Trench subduction zones – Current achievements and future challenges. Earth-Science Reviews, 2020, 210, 103333.	4.0	14
83	Problems and perspectives of the tsunami deposits after the 2004 Indian Ocean tsunami. Journal of the Geological Society of Japan, 2008, 114, 599-617.	0.2	12
84	Environmental and vegetational changes recorded in sedimentary leaf wax n-alkanes across the Cretaceous–Paleogene boundary at Loma Capiro, Central Cuba. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 295, 31-41.	1.0	12
85	Geomorphic imprints of repeated tsunami waves in a coastal valley in northeastern Japan. Geomorphology, 2015, 242, 3-10.	1.1	12
86	Millennial scale maximum intensities of typhoon and storm wave in the northwestern Pacific Ocean inferred from storm deposited reef boulders. Scientific Reports, 2020, 10, 7218.	1.6	12
87	Size and spatial distributions of fault populations: Empirically synthesized evolution laws for the fractal geometries. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	11
88	High-sensitive elemental analysis using multi-parameter coincidence spectrometer: GEMINI-II. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 273-276.	0.7	11
89	Inundation and topographic Change due to the 2004 Indian Ocean Tsunami at the Kirinda port, Sri Lanka. Proceedings of Coastal Engineering Jsce, 2008, 55, 251-255.	0.1	11
90	Could tsunami risk be underestimated using coreâ€based reconstructions? Lessons from ground penetrating radar. Earth Surface Processes and Landforms, 2018, 43, 808-816.	1.2	11

Каzuhisa Goto

#	Article	IF	CITATIONS
91	Barrier spit recovery following the 2004 Indian Ocean tsunami at Pakarang Cape, southwest Thailand. Geomorphology, 2018, 306, 314-324.	1.1	11
92	Redox conditions in the atmosphere and shallow-marine environments during the first Huronian deglaciation: Insights from Os isotopes and redox-sensitive elements. Earth and Planetary Science Letters, 2013, 376, 145-154.	1.8	9
93	Global Disaster: The 2004 Indian Ocean Tsunami. Journal of Disaster Research, 2006, 1, 131-135.	0.4	9
94	Re-evaluation of the 1771 Meiwa Tsunami Source Model, Southern Ryukyu Islands, Japan. , 2012, , 497-506.		8
95	Preface for Special Issue of Marine Geology: In the wake of the 2011 Tohoku-oki tsunami – three years on. Marine Geology, 2014, 358, 1.	0.9	8
96	Putting a spin on palaeotsunami deposits. Earth Surface Processes and Landforms, 2016, 41, 1293-1296.	1.2	8
97	A gigantic boulder transported by the 2011 Tohokuâ€oki tsunami. Island Arc, 2019, 28, e12321.	0.5	8
98	Advances in the study of mega-tsunamis in the geological record. Earth-Science Reviews, 2020, 210, 103381.	4.0	8
99	Historical and geological evidence for the seventeenth-century tsunamis along Kuril and Japan trenches: implications for the origin of the AD 1611 Keicho earthquake and tsunami, and for the probable future risk potential. Geological Society Special Publication, 2021, 501, 269-288.	0.8	8
100	Current progress and perspectives of the research on tsunami boulders. Journal of the Sedimentological Society of Japan, 2012, 71, 129-139.	0.3	8
101	Paleotsunami history along the northern Japan trench based on sequential dating of the continuous geological record potentially inundated only by large tsunamis. Quaternary Science Reviews, 2022, 279, 107381.	1.4	8
102	Anomalous negative excursion of carbon isotope in organic carbon after the last Paleoproterozoic glaciation in North America. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	7
103	Characteristics of Erosional Morphology Formed by Tsunami Waves along the Sanriku Coast, Northeastern Japan. Journal of Geography (Chigaku Zasshi), 2015, 124, 241-258.	0.1	7
104	Source model of the 1703 Genroku Kanto earthquake tsunami based on historical documents and numerical simulations: modeling of an offshore fault along the Sagami Trough. Earth, Planets and Space, 2017, 69, .	0.9	7
105	Progress in tsunami sedimentology. Journal of the Geological Society of Japan, 2021, 127, 199-214.	0.2	6
106	Problems and perspectives of the tsunami boulder research for future disaster prevention countermeasure. Journal of the Sedimentological Society of Japan, 2009, 68, 3-11.	0.3	6
107	Field Observation and the Applicability Limit of the Model for Boulder Transport by the Tsunami (BTT-Model) based on the Hydraulic Experiment. Proceedings of Coastal Engineering Jsce, 2007, 54, 231-235.	0.1	5
108	PDF orientations in shocked quartz grains around the Chicxulub crater. Meteoritics and Planetary Science, 2008, 43, 745-760.	0.7	5

Казиніза Сото

#	Article	IF	CITATIONS
109	Inverse magnetic fabric in unconsolidated sandy event deposits in Kiritappu Marsh, Hokkaido, Japan. Sedimentary Geology, 2017, 349, 112-119.	1.0	5
110	Large tsunamis reset growth of massive corals. Progress in Earth and Planetary Science, 2019, 6, .	1.1	5
111	Identification of Coastal Sand Deposits From Tsunamis and Storm Waves Based on Numerical Computations. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006092.	1.0	5
112	Defining tsunamis: Yoda strikes back?. Earth-Science Reviews, 2016, 159, 271-274.	4.0	4
113	Dating of tsunami boulders from Ishigaki Island, Japan, with a modified viscous remanent magnetization approach. Earth and Planetary Science Letters, 2019, 520, 94-104.	1.8	4
114	Three thousand year paleo-tsunami history of the southern part of the Japan Trench. Progress in Earth and Planetary Science, 2021, 8, .	1.1	4
115	Effect of artificial structures on the formation process of the 2011 Tohoku-oki tsunami deposits. Sedimentary Geology, 2021, 423, 105978.	1.0	4
116	Lessons learned from the 2011 Tohoku-oki tsunami and future perspective of the tsunami geology. Journal of the Sedimentological Society of Japan, 2012, 71, 105-117.	0.3	4
117	EXPLORING HYBRID MODELING OF TSUNAMI FLOW AND DEPOSIT CHARACTERISTICS. , 2015, , .		3
118	Geological studies in tsunami research since the 2011 Tohoku earthquake. Geological Society Special Publication, 2018, 456, 39-53.	0.8	3
119	Redeposition of volcaniclastic sediments by a tsunami 4600Âyears ago at Kushima City, southâ€eastern Kyushu, Japan. Sedimentology, 2020, 67, 1354-1372.	1.6	3
120	Millennial paleotsunami history at Minna Island, southern Ryukyu Islands, Japan. Progress in Earth and Planetary Science, 2020, 7, .	1.1	3
121	Effects of Tsunami Wave Erosion on Natural Landscapes: Examples from the 2011 Tohoku-oki Tsunami. Advances in Natural and Technological Hazards Research, 2014, , 243-253.	1.1	3
122	Reconstruction of transport modes and flow parameters from coastal boulders. , 2020, , 617-639.		3
123	The Great Chicxulub Debate -Synchronicity of the Chicxulub impact and the Cretaceous/Tertiary boundary Journal of the Geological Society of Japan, 2005, 111, 193-205.	0.2	3
124	Predicting Future Tsunamis by Combining Historical Documentation, Sedimentological Study and Numerical Simulation. The Quaternary Research, 2007, 46, 491-498.	0.2	3
125	Derivation, Validation, and Numerical Implementation of a Two-Dimensional Boulder Transport Formulation by Coastal Waves. Journal of Earthquake and Tsunami, 2023, 17, .	0.7	3
126	Paleotsunami researches along the Ryukyu Trench. Journal of the Geological Society of Japan, 2017, 123, 843-855.	0.2	2

	~
KAZUHISA	COTO
NAZURISA	

#	Article	IF	CITATIONS
127	Depositional processes of impactites from the YAXâ€1 drill core in the Chicxulub impact structure inferred from vertical profiles of PDF orientations and grain size distributions of shocked quartz. Meteoritics and Planetary Science, 2018, 53, 1323-1340.	0.7	2
128	Threshold flow depths to move large boulders by the 2011 Tohoku-oki tsunami. Scientific Reports, 2021, 11, 13434.	1.6	2
129	NEARSHORE EROSION AND OFFSHORE-DIRECTED SEDIMENT TRANSPORT BY TOHOKU-OKI TSUNAMI OFF SOUTHERN PART OF THE SENDAI PLAIN. Journal of Japan Society of Civil Engineers Ser B2 (Coastal) Tj ETQq1 1 0.3	7 840 14 rg	gBI /Overloc
130	Restoration Measures After the 2011 Tohoku-oki Tsunami and Their Impact on Tsunami Research. Advances in Natural and Technological Hazards Research, 2018, , 229-247.	1.1	2
131	NUMERICAL SIMULATION FOR UNDERSTANDING OF THE OFFSHORE- DIRECTED SEDIMENT TRANSPORT BY 2011 TOHOKU-OKI TSUNAMI AT SOUTHERN PART OF THE SENDAI BAY. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2018, 74, I_337-I_342.	0.0	2
132	Data of boulder transport experiment in super-large wave flume. Journal of the Sedimentological Society of Japan, 2020, 79, 15-25.	0.3	2
133	Application of Paleoseismological Data for Disaster Prevention. The Quaternary Research, 2007, 46, 445-450.	0.2	1
134	Thematic Section: Bridging the gap separating geological studies and disaster mitigation countermeasures for earthquakes and tsunami†Preface. Island Arc, 2010, 19, 371-373.	0.5	1
135	Geological records of storms, tsunamis and other extreme events. Island Arc, 2016, 25, 303-304.	0.5	1
136	Numerical estimation of maximum possible sizes of paleo-earthquakes and tsunamis from storm-derived boulders. Earth and Planetary Science Letters, 2022, 579, 117354.	1.8	1
137	Paleotsunami history of Hachinohe, northern Japan: a multiproxy analysis and numerical modeling approach. Progress in Earth and Planetary Science, 2022, 9, .	1.1	1
138	Mass extinction caused by extraterrestrial impact: Why did it occur only at the Cretaceous/Paleogene boundary?. Journal of the Geological Society of Japan, 2011, 117, 193-203.	0.2	0
139	Estimating the 2004 Indian Ocean Tsunami Wave Height and Period from Boulders' Distribution at Pakarang Cape, Thailand. Advances in Natural and Technological Hazards Research, 2014, , 215-223.	1.1	0
140	Tsunamis. Encyclopedia of Earth Sciences Series, 2018, , 910-911.	0.1	0
141	Paleomagnetic dating of wave-emplaced boulders. , 2020, , 777-793.		0