
Michael Detmar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4957882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a diffusion-weighed mathematical model for intradermal drainage quantification. Drug Delivery and Translational Research, 2022, 12, 897-905.	3.0	0
2	Novel Blood Vascular Endothelial Subtype-Specific Markers in Human Skin Unearthed by Single-Cell Transcriptomic Profiling. Cells, 2022, 11, 1111.	1.8	6
3	Sostdc1 Secreted from Cutaneous Lymphatic Vessels Acts as a Paracrine Factor for Hair Follicle Growth. Current Issues in Molecular Biology, 2022, 44, 2167-2174.	1.0	9
4	Mediators of Capillary-to-Venule Conversion in the Chronic Inflammatory Skin Disease Psoriasis. Journal of Investigative Dermatology, 2022, 142, 3313-3326.e13.	0.3	6
5	Lymphatic vessels in cancer. Physiological Reviews, 2022, 102, 1837-1879.	13.1	38
6	Epigenetic regulation of the lineage specificity of primary human dermal lymphatic and blood vascular endothelial cells. Angiogenesis, 2021, 24, 67-82.	3.7	20
7	LETR1 is a lymphatic endothelial-specific IncRNA governing cell proliferation and migration through KLF4 and SEMA3C. Nature Communications, 2021, 12, 925.	5.8	18
8	Beyond PROX1: transcriptional, epigenetic, and noncoding RNA regulation of lymphatic identity and function. Developmental Cell, 2021, 56, 406-426.	3.1	38
9	CD169+ lymph node macrophages have protective functions in mouse breast cancer metastasis. Cell Reports, 2021, 35, 108993.	2.9	26
10	Upregulation of VCAM-1 in lymphatic collectors supports dendritic cell entry and rapid migration to lymph nodes in inflammation. Journal of Experimental Medicine, 2021, 218, .	4.2	37
11	Single-Cell Transcriptional Heterogeneity of Lymphatic Endothelial Cells in Normal and Inflamed Murine Lymph Nodes. Cells, 2021, 10, 1371.	1.8	19
12	Lymphatic PD-L1 Expression Restricts Tumor-Specific CD8+ T-cell Responses. Cancer Research, 2021, 81, 4133-4144.	0.4	39
13	Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. Nature Communications, 2021, 12, 3297.	5.8	11
14	The choice of negative control antisense oligonucleotides dramatically impacts downstream analysis depending on the cellular background. BMC Genomic Data, 2021, 22, 33.	0.7	0
15	Development and Clinical Validation of the LymphMonitor Technology to Quantitatively Assess Lymphatic Function. Diagnostics, 2021, 11, 1873.	1.3	2
16	Sialoglycans on lymphatic endothelial cells augment interactions with Siglecâ€1 (CD169) of lymph node macrophages. FASEB Journal, 2021, 35, e22017.	0.2	6
17	Rational design of a fluorescent microneedle tattoo for minimally invasive monitoring of lymphatic function. Journal of Controlled Release, 2020, 327, 350-359.	4.8	15
18	Keratinocyte-Expressed Podoplanin is Dispensable for Multi-Step Skin Carcinogenesis. Cells, 2020, 9, 1542.	1.8	6

#	Article	IF	CITATIONS
19	Differential effects of anaesthesia on the contractility of lymphatic vessels <i>in vivo</i> : authors' reply. Journal of Physiology, 2020, 598, 2037-2037.	1.3	0
20	Characterization of Tumor Blood Vasculature Expression of Human Invasive Bladder Cancer by Laser Capture Microdissection and Transcriptional Profiling. American Journal of Pathology, 2020, 190, 1960-1970.	1.9	8
21	Lymphatic MAFB regulates vascular patterning during developmental and pathological lymphangiogenesis. Angiogenesis, 2020, 23, 411-423.	3.7	32
22	Single-cell mapping reveals new markers and functions of lymphatic endothelial cells in lymph nodes. PLoS Biology, 2020, 18, e3000704.	2.6	88
23	An important role of podoplanin in hair follicle growth. PLoS ONE, 2019, 14, e0219938.	1.1	9
24	Transcriptional profiling of breast cancerâ€associated lymphatic vessels reveals VCAMâ€1 as regulator of lymphatic invasion and permeability. International Journal of Cancer, 2019, 145, 2804-2815.	2.3	22
25	An important role of cutaneous lymphatic vessels in coordinating and promoting anagen hair follicle growth. PLoS ONE, 2019, 14, e0220341.	1.1	22
26	Lymphatic outflow of cerebrospinal fluid is reduced in glioma. Scientific Reports, 2019, 9, 14815.	1.6	64
27	Antibody-Mediated Delivery of VEGFC Ameliorates Experimental Chronic Colitis. ACS Pharmacology and Translational Science, 2019, 2, 342-352.	2.5	13
28	Activation of the VEGFC/VEGFR3 Pathway Induces Tumor Immune Escape in Colorectal Cancer. Cancer Research, 2019, 79, 4196-4210.	0.4	53
29	Differential effects of anaesthesia on the contractility of lymphatic vessels <i>in vivo</i> . Journal of Physiology, 2019, 597, 2841-2852.	1.3	26
30	Inflammation and Lymphatic Function. Frontiers in Immunology, 2019, 10, 308.	2.2	161
31	AutoTube: a novel software for the automated morphometric analysis of vascular networks in tissues. Angiogenesis, 2019, 22, 223-236.	3.7	55
32	Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathologica, 2019, 137, 151-165.	3.9	145
33	Minimally invasive method for the point-of-care quantification of lymphatic vessel function. JCI Insight, 2019, 4, .	2.3	19
34	Alternative transcription of a shorter, non-anti-angiogenic thrombospondin-2 variant in cancer-associated blood vessels. Oncogene, 2018, 37, 2573-2585.	2.6	22
35	Lymphatic exosomes promote dendritic cell migration along guidance cues. Journal of Cell Biology, 2018, 217, 2205-2221.	2.3	57
36	Multiple roles of lymphatic vessels in tumor progression. Current Opinion in Immunology, 2018, 53, 7-12.	2.4	68

#	Article	IF	CITATIONS
37	Mechanisms of Tumor-Induced Lymphovascular Niche Formation in Draining Lymph Nodes. Cell Reports, 2018, 25, 3554-3563.e4.	2.9	60
38	Visualization and Measurement of Lymphatic Function In Vivo. Methods in Molecular Biology, 2018, 1846, 197-211.	0.4	6
39	Itch suppression in mice and dogs by modulation of spinal α2 and α3GABAA receptors. Nature Communications, 2018, 9, 3230.	5.8	34
40	Unexpected contribution of lymphatic vessels to promotion of distant metastatic tumor spread. Science Advances, 2018, 4, eaat4758.	4.7	67
41	Antibody-mediated delivery of VEGF-C potently reduces chronic skin inflammation. JCI Insight, 2018, 3, .	2.3	34
42	T Cell Migration from Inflamed Skin to Draining Lymph Nodes Requires Intralymphatic Crawling Supported by ICAM-1/LFA-1 Interactions. Cell Reports, 2017, 18, 857-865.	2.9	96
43	High expression of insulin receptor on tumourâ€associated blood vessels in invasive bladder cancer predicts poor overall and progressionâ€free survival. Journal of Pathology, 2017, 242, 193-205.	2.1	24
44	An integrated expression atlas of miRNAs and their promoters in human and mouse. Nature Biotechnology, 2017, 35, 872-878.	9.4	456
45	FANTOM5 CAGE profiles of human and mouse samples. Scientific Data, 2017, 4, 170112.	2.4	195
46	Distinct transcriptional responses of lymphatic endothelial cells to VEGFR-3 and VEGFR-2 stimulation. Scientific Data, 2017, 4, 170106.	2.4	25
47	Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nature Communications, 2017, 8, 1434.	5.8	458
48	Postnatal Deletion of Podoplanin in Lymphatic Endothelium Results in Blood Filling of the Lymphatic System and Impairs Dendritic Cell Migration to Lymph Nodes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 108-117.	1.1	54
49	Tumor-Associated Lymphatic Vessels Upregulate PDL1 to Inhibit T-Cell Activation. Frontiers in Immunology, 2017, 8, 66.	2.2	102
50	Quantitative measurement of lymphatic function in mice by noninvasive near-infrared imaging of a peripheral vein. JCI Insight, 2017, 2, e90861.	2.3	28
51	In vivo visualization and quantification of collecting lymphatic vessel contractility using near-infrared imaging. Scientific Reports, 2016, 6, 22930.	1.6	33
52	DeepCAGE transcriptomics identify HOXD10 as transcription factor regulating lymphatic endothelial responses to VEGF-C. Journal of Cell Science, 2016, 129, 2573-85.	1.2	15
53	Microneedles for the Noninvasive Structural and Functional Assessment of Dermal Lymphatic Vessels. Small, 2016, 12, 1053-1061.	5.2	30
54	Findings questioning the involvement of Sigma-1 receptor in the uptake of anisamide-decorated particles. Journal of Controlled Release, 2016, 224, 229-238.	4.8	24

#	Article	IF	CITATIONS
55	Tumor lymphangiogenesis and new drug development. Advanced Drug Delivery Reviews, 2016, 99, 148-160.	6.6	117
56	Lymphatic endothelial cells attenuate inflammation via suppression of dendritic cell maturation. Oncotarget, 2016, 7, 39421-39435.	0.8	60
57	DeepCAGE Transcriptomics Reveal an Important Role of the Transcription Factor MAFB in the Lymphatic Endothelium. Cell Reports, 2015, 13, 1493-1504.	2.9	46
58	Drug Pharmacokinetics Determined by Realâ€īme Analysis of Mouse Breath. Angewandte Chemie - International Edition, 2015, 54, 7815-7818.	7.2	55
59	Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science, 2015, 347, 1010-1014.	6.0	517
60	A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. Journal of Experimental Medicine, 2015, 212, 991-999.	4.2	1,543
61	Decline of lymphatic vessel density and function in murine skin during aging. Angiogenesis, 2015, 18, 489-498.	3.7	63
62	An Important Role of the SDF-1/CXCR4 Axis in Chronic Skin Inflammation. PLoS ONE, 2014, 9, e93665.	1.1	61
63	Chronic High-Fat Diet Impairs Collecting Lymphatic Vessel Function in Mice. PLoS ONE, 2014, 9, e94713.	1.1	113
64	Lymphatic vessels: new targets for the treatment of inflammatory diseases. Angiogenesis, 2014, 17, 359-371.	3.7	88
65	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	13.7	1,838
66	Thrombospondin-2 overexpression in the skin of transgenic mice reduces the susceptibility to chemically induced multistep skin carcinogenesis. Journal of Dermatological Science, 2014, 74, 106-115.	1.0	15
67	Lymphatics in nanophysiology. Advanced Drug Delivery Reviews, 2014, 74, 12-18.	6.6	14
68	The Role of Neuropilin-1/Semaphorin 3A Signaling in Lymphatic Vessel Development and Maturation. Advances in Anatomy, Embryology and Cell Biology, 2014, 214, 143-152.	1.0	13
69	Mechanisms of lymphatic metastasis. Journal of Clinical Investigation, 2014, 124, 922-928.	3.9	429
70	Use of a PEG-conjugated bright near-infrared dye for functional imaging of rerouting of tumor lymphatic drainage after sentinel lymph node metastasis. Biomaterials, 2013, 34, 5128-5137.	5.7	134
71	Expansion of the lymphatic vasculature in cancer and inflammation: New opportunities for in vivo imaging and drug delivery. Journal of Controlled Release, 2013, 172, 550-557.	4.8	52
72	VEGF-C and VEGF-D Blockade Inhibits Inflammatory Skin Carcinogenesis. Cancer Research, 2013, 73, 4212-4221.	0.4	72

#	Article	IF	CITATIONS
73	Dynamics of lymphatic regeneration and flow patterns after lymph node dissection. Breast Cancer Research and Treatment, 2013, 139, 81-86.	1.1	71
74	Endocan Is Upregulated on Tumor Vessels in Invasive Bladder Cancer Where It Mediates VEGF-A–Induced Angiogenesis. Cancer Research, 2013, 73, 1097-1106.	0.4	150
75	An Important Role of Blood and Lymphatic Vessels in Inflammation and Allergy. Journal of Allergy, 2013, 2013, 1-9.	0.7	46
76	Blockade of VEGF Receptor-3 Aggravates Inflammatory Bowel Disease and Lymphatic Vessel Enlargement. Inflammatory Bowel Diseases, 2013, 19, 1.	0.9	68
77	Phenotype-based high-content chemical library screening identifies statins as inhibitors of in vivo lymphangiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2665-74.	3.3	64
78	Induced lymphatic sinus hyperplasia in sentinel lymph nodes by VEGF-C as the earliest premetastatic indicator. International Journal of Oncology, 2012, 41, 2073-2078.	1.4	41
79	Inflammation-Induced Lymph Node Lymphangiogenesis Is Reversible. American Journal of Pathology, 2012, 180, 874-879.	1.9	32
80	An important role of lymphatic vessel activation in limiting acute inflammation. Blood, 2011, 117, 4667-4678.	0.6	212
81	The Cutaneous Vascular System in Chronic Skin Inflammation. Journal of Investigative Dermatology Symposium Proceedings, 2011, 15, 24-32.	0.8	119
82	Podoplanin-Fc reduces lymphatic vessel formation in vitro and in vivo and causes disseminated intravascular coagulation when transgenically expressed in the skin. Blood, 2010, 116, 4376-4384.	0.6	50
83	Thymus cell antigen 1 (Thy1, CD90) is expressed by lymphatic vessels and mediates cell adhesion to lymphatic endothelium. Experimental Cell Research, 2010, 316, 2982-2992.	1.2	64
84	Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation. Journal of Experimental Medicine, 2010, 207, 2255-2269.	4.2	208
85	Quantitative Imaging of Lymphatic Function with Liposomal Indocyanine Green. Cancer Research, 2010, 70, 7053-7062.	0.4	186
86	Tumor Lymphangiogenesis and Metastasis to Lymph Nodes Induced by Cancer Cell Expression of Podoplanin. American Journal of Pathology, 2010, 177, 1004-1016.	1.9	117
87	TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. BioTechniques, 2009, 46, 265-274.	0.8	532
88	Galectin-8 interacts with podoplanin and modulates lymphatic endothelial cell functions. Experimental Cell Research, 2009, 315, 1715-1723.	1.2	90
89	Lymphatic invasion in cutaneous melanoma is associated with sentinel lymph node metastasis. Journal of Cutaneous Pathology, 2009, 36, 772-780.	0.7	79
90	The Lymphatic System in Health and Disease. Lymphatic Research and Biology, 2008, 6, 109-122.	0.5	242

#	Article	IF	CITATIONS
91	Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specific molecule-1 as a novel mediator of lymphangiogenesis. Blood, 2008, 112, 2318-2326.	0.6	123
92	VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes. Blood, 2007, 110, 3158-3167.	0.6	161
93	VEGF-C–induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood, 2007, 109, 1010-1017.	0.6	473
94	A Human mAb Specific to Oncofetal Fibronectin Selectively Targets Chronic Skin Inflammation In Vivo. Journal of Investigative Dermatology, 2007, 127, 881-886.	0.3	29
95	New Insights into the Molecular Control of the Lymphatic Vascular System and its Role in Disease. Journal of Investigative Dermatology, 2006, 126, 2167-2177.	0.3	213
96	Prox1 Promotes Lineage-specific Expression of Fibroblast Growth Factor (FGF) Receptor-3 in Lymphatic Endothelium: A Role for FGF Signaling in Lymphangiogenesis. Molecular Biology of the Cell, 2006, 17, 576-584.	0.9	175
97	Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO Journal, 2005, 24, 2885-2895.	3.5	290
98	VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. Journal of Experimental Medicine, 2005, 201, 1089-1099.	4.2	630
99	Up-Regulation of the Lymphatic Marker Podoplanin, a Mucin-Type Transmembrane Glycoprotein, in Human Squamous Cell Carcinomas and Germ Cell Tumors. American Journal of Pathology, 2005, 166, 913-921.	1.9	552
100	Tumor progression: the effects of thrombospondin-1 and -2. International Journal of Biochemistry and Cell Biology, 2004, 36, 1038-1045.	1.2	211
101	Expression of the Type-1 Repeats of Thrombospondin-1 Inhibits Tumor Growth Through Activation of Transforming Growth Factor-β. American Journal of Pathology, 2004, 165, 541-552.	1.9	56
102	Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood, 2004, 104, 1048-1057.	0.6	284
103	Prox1, master regulator of the lymphatic vasculature phenotype. Cell and Tissue Research, 2003, 314, 85-92.	1.5	117
104	Thrombospondin-1 Plays a Critical Role in the Induction of Hair Follicle Involution and Vascular Regression During the Catagen Phase. Journal of Investigative Dermatology, 2003, 120, 14-19.	0.3	47
105	An N-Terminal 80 kDa Recombinant Fragment of Human Thrombospondin-2 Inhibits Vascular Endothelial Growth Factor Induced Endothelial Cell Migration In Vitro and Tumor Growth and Angiogenesis In Vivo. Journal of Investigative Dermatology, 2003, 121, 1536-1543.	0.3	46
106	Identification of Vascular Lineage-Specific Genes by Transcriptional Profiling of Isolated Blood Vascular and Lymphatic Endothelial Cells. American Journal of Pathology, 2003, 162, 575-586.	1.9	409
107	Tumor Lymphangiogenesis. American Journal of Pathology, 2003, 162, 1951-1960.	1.9	463
108	Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Developmental Dynamics, 2002, 225, 351-357.	0.8	469

#	Article	IF	CITATIONS
109	An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO Journal, 2002, 21, 1505-1513.	3.5	783
110	Systemic inhibition of tumor growth and angiogenesis by thrombospondin-2 using cell-based antiangiogenic gene therapy. Cancer Research, 2002, 62, 2004-12.	0.4	58
111	Control of hair growth and follicle size by VECF-mediated angiogenesis. Journal of Clinical Investigation, 2001, 107, 409-417.	3.9	516
112	Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nature Medicine, 2001, 7, 192-198.	15.2	1,555
113	Structure, Function, and Molecular Control of the Skin Lymphatic System. Journal of Investigative Dermatology Symposium Proceedings, 2000, 5, 14-19.	0.8	209
114	The role of VEGF and thrombospondins in skin angiogenesis. Journal of Dermatological Science, 2000, 24, S78-S84.	1.0	153
115	Overexpression of Thrombospondin-1 Decreases Angiogenesis and Inhibits the Growth of Human Cutaneous Squamous Cell Carcinomas. American Journal of Pathology, 1999, 155, 441-452.	1.9	273
116	Effect of Recombinant Tumor Necrosis Factor-Alpha on Cultured Microvascular Endothelial Cells Derived From Human Dermis. Journal of Investigative Dermatology, 1990, 95, S219-S222.	0.3	38
117	A Rapid Fluorometric Assay for the Determination of Keratinocyte Proliferation In Vitro. Journal of Investigative Dermatology, 1989, 93, 532-534.	0.3	46