Sean D Connell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4957483/publications.pdf Version: 2024-02-01

		23500	32761
211	11,943	58	100
papers	citations	h-index	g-index
210	210	210	0522
218	218	218	8532
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Global patterns of kelp forest change over the past half-century. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13785-13790.	3.3	511
2	Observations in ecology: you can't make progress on processes without understanding the patterns. Journal of Experimental Marine Biology and Ecology, 2000, 250, 97-115.	0.7	383
3	Nonindigenous biota on artificial structures: could habitat creation facilitate biological invasions?. Marine Biology, 2007, 151, 887-895.	0.7	372
4	Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. Journal of Experimental Marine Biology and Ecology, 2011, 400, 7-16.	0.7	350
5	Seaweed Communities in Retreat from Ocean Warming. Current Biology, 2011, 21, 1828-1832.	1.8	297
6	Recovering a lost baseline: missing kelp forests from a metropolitan coast. Marine Ecology - Progress Series, 2008, 360, 63-72.	0.9	286
7	The 'Great Southern Reef': social, ecological and economic value of Australia's neglected kelp forests. Marine and Freshwater Research, 2016, 67, 47.	0.7	285
8	The direct effects of increasing CO ₂ and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1409-1415.	1.2	277
9	Synergistic effects of climate change and local stressors: CO ₂ and nutrientâ€driven change in subtidal rocky habitats. Global Change Biology, 2009, 15, 2153-2162.	4.2	242
10	Do urban structures influence local abundance and diversity of subtidal epibiota? A case study from Sydney Harbour, Australia. Marine Environmental Research, 1999, 47, 373-387.	1.1	240
11	Ocean acidification through the lens of ecological theory. Ecology, 2015, 96, 3-15.	1.5	237
12	Ocean Acidification and Human Health. International Journal of Environmental Research and Public Health, 2020, 17, 4563.	1.2	237
13	Global alteration of ocean ecosystem functioning due to increasing human CO ₂ emissions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13272-13277.	3.3	220
14	The influence of habitat complexity on postrecruitment processes in a temperate reef fish population. Journal of Experimental Marine Biology and Ecology, 1991, 151, 271-294.	0.7	207
15	The other ocean acidification problem: CO ₂ as a resource among competitors for ecosystem dominance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120442.	1.8	199
16	Expansive covers of turf-forming algae on human-dominated coast: the relative effects of increasing nutrient and sediment loads. Marine Biology, 2004, 145, 613.	0.7	174
17	Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nature Climate Change, 2017, 7, 81-85.	8.1	164
18	Urban structures as marine habitats: an experimental comparison of the composition and abundance of subtidal epibiota among pilings, pontoons and rocky reefs. Marine Environmental Research, 2001, 52, 115-125.	1.1	162

#	Article	IF	CITATIONS
19	Relationships between taxonomic resolution and spatial scales of multivariate variation. Journal of Animal Ecology, 2005, 74, 636-646.	1.3	149
20	Distribution models predict large contractions of habitatâ€forming seaweeds in response to ocean warming. Diversity and Distributions, 2018, 24, 1350-1366.	1.9	129
21	Sedimentation and light penetration interact to maintain heterogeneity of subtidal habitats: algal versus invertebrate dominated assemblages. Marine Ecology - Progress Series, 2002, 245, 83-91.	0.9	125
22	Floating pontoons create novel habitats for subtidal epibiota. Journal of Experimental Marine Biology and Ecology, 2000, 247, 183-194.	0.7	124
23	Differences in kelp morphology between wave sheltered and exposed localities: morphologically plastic or fixed traits?. Marine Biology, 2006, 148, 755-767.	0.7	124
24	Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. Journal of Biogeography, 2008, 35, 1608-1621.	1.4	124
25	Recovering subtidal forests in humanâ€dominated landscapes. Journal of Applied Ecology, 2009, 46, 1258-1265.	1.9	122
26	Ocean acidification and global warming impair shark hunting behaviour and growth. Scientific Reports, 2015, 5, 16293.	1.6	115
27	Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecology Letters, 2015, 18, 182-187.	3.0	114
28	Landâ€ŧoâ€sea connectivity: linking humanâ€derived terrestrial subsidies to subtidal habitat change on open rocky coasts. Ecological Applications, 2009, 19, 1114-1126.	1.8	111
29	Resisting regime-shifts: the stabilising effect of compensatory processes. Trends in Ecology and Evolution, 2015, 30, 513-515.	4.2	111
30	Beyond long-term averages: making biological sense of a rapidly changing world. Climate Change Responses, 2014, 1, .	2.6	106
31	Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory. Conservation Biology, 2015, 29, 795-804.	2.4	106
32	A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Scientific Reports, 2012, 2, 413.	1.6	104
33	Future seagrass beds: Can increased productivity lead to increased carbon storage?. Marine Pollution Bulletin, 2013, 73, 463-469.	2.3	103
34	Ocean acidification alters fish populations indirectly through habitat modification. Nature Climate Change, 2016, 6, 89-93.	8.1	103
35	Variation in the strength of continental boundary currents determines continent-wide connectivity in kelp. Journal of Ecology, 2011, 99, 1026-1032.	1.9	102
36	The monopolization of understorey habitat by subtidal encrusting coralline algae: a test of the combined effects of canopy-mediated light and sedimentation. Marine Biology, 2003, 142, 1065-1071.	0.7	88

#	Article	IF	CITATIONS
37	Ecological complexity buffers the impacts of future climate on marine consumers. Nature Climate Change, 2018, 8, 229-233.	8.1	88
38	Everyone Loves a Success Story: Optimism Inspires Conservation Engagement. BioScience, 2019, 69, 274-281.	2.2	85
39	Contrasting resource limitations of marine primary producers: implications for competitive interactions under enriched CO2 and nutrient regimes. Oecologia, 2013, 172, 575-583.	0.9	82
40	Negative effects overpower the positive of kelp to exclude invertebrates from the understorey community. Oecologia, 2003, 137, 97-103.	0.9	81
41	Spatial, temporal and habitat-related variation in the abundance of large predatory fish at One Tree Reef, Australia. Coral Reefs, 1998, 17, 49-57.	0.9	79
42	Ocean acidification and rising temperatures may increase biofilm primary productivity but decrease grazer consumption. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120438.	1.8	79
43	Population dynamics can be more important than physiological limits for determining range shifts under climate change. Global Change Biology, 2013, 19, 3224-3237.	4.2	73
44	Restoring Coastal Plants to Improve Global Carbon Storage: Reaping What We Sow. PLoS ONE, 2011, 6, e18311.	1.1	71
45	Climateâ€driven disparities among ecological interactions threaten kelp forest persistence. Global Change Biology, 2017, 23, 353-361.	4.2	69
46	Adaptive Responses of Marine Gastropods to Heatwaves. One Earth, 2019, 1, 374-381.	3.6	69
47	A novel interaction between nutrients and grazers alters relative dominance of marine habitats. Marine Ecology - Progress Series, 2005, 289, 5-11.	0.9	69
48	Is there safety-in-numbers for prey?. Oikos, 2000, 88, 527-532.	1.2	67
49	How ocean acidification can benefit calcifiers. Current Biology, 2017, 27, R95-R96.	1.8	67
50	Physical disturbance and subtidal habitat structure on open rocky coasts: Effects of wave exposure, extent and intensity. Journal of Sea Research, 2008, 59, 237-248.	0.6	66
51	Conceptualizing ecosystem tipping points within a physiological framework. Ecology and Evolution, 2017, 7, 6035-6045.	0.8	64
52	Predicting understorey structure from the presence and composition of canopies: an assembly rule for marine algae. Oecologia, 2006, 148, 491-502.	0.9	63
53	Ocean acidification as a driver of community simplification via the collapse of higher-order and rise of lower-order consumers. Scientific Reports, 2017, 7, 4018.	1.6	63
54	Effects of kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae. Journal of Experimental Marine Biology and Ecology, 2004, 310, 1-12.	0.7	62

#	Article	IF	CITATIONS
55	Local complexity in patterns of canopy?benthos associations produces regional patterns across temperate Australasia. Marine Biology, 2004, 144, 361-368.	0.7	62
56	The responses of brown macroalgae to environmental change from local to global scales: direct versus ecologically mediated effects. Perspectives in Phycology, 2015, 2, 11-29.	1.9	62
57	Australia's marine biogeography revisited: Back to the future?. Austral Ecology, 2010, 35, 988-992.	0.7	60
58	Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science, 2020, 369, 829-832.	6.0	60
59	Future herbivory: the indirect effects of enriched CO2 may rival its direct effects. Marine Ecology - Progress Series, 2013, 492, 85-95.	0.9	60
60	Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification. Biology Letters, 2016, 12, 20150937.	1.0	56
61	Publishing with Objective Charisma: Breaking Science's Paradox. Trends in Ecology and Evolution, 2017, 32, 803-805.	4.2	56
62	Quantifying percentage cover of subtidal organisms on rocky coasts: a comparison of the costs and benefits of standard methods. Marine and Freshwater Research, 2005, 56, 865.	0.7	55
63	Physical disturbance by kelp abrades erect algae from the understorey. Marine Ecology - Progress Series, 2006, 324, 127-137.	0.9	55
64	Patterns of pisciviory by resident predatory reef fish at One Tree Reef, Great Barrier Reef. Marine and Freshwater Research, 1998, 49, 25.	0.7	54
65	Effect of vessel voyage speed on survival of biofouling organisms: implications for translocation of non-indigenous marine species. Biofouling, 2010, 26, 1-13.	0.8	54
66	Mineralogical Plasticity Acts as a Compensatory Mechanism to the Impacts of Ocean Acidification. Environmental Science & Technology, 2017, 51, 2652-2659.	4.6	51
67	The duality of ocean acidification as a resource and a stressor. Ecology, 2018, 99, 1005-1010.	1.5	51
68	Stability of Strong Species Interactions Resist the Synergistic Effects of Local and Global Pollution in Kelp Forests. PLoS ONE, 2012, 7, e33841.	1.1	51
69	Nutrients increase epiphyte loads: broad-scale observations and an experimental assessment. Marine Biology, 2005, 147, 551-558.	0.7	50
70	Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Marine Ecology - Progress Series, 2013, 485, 37-46.	0.9	50
71	Variations in the configuration of algae in subtidal forests: Implications for invertebrate assemblages. Austral Ecology, 2004, 29, 350-357.	0.7	49
72	Disrupting the effects of synergies between stressors: improved water quality dampens the effects of future <scp>CO</scp> ₂ on a marine habitat. Journal of Applied Ecology, 2013, 50, 51-58.	1.9	49

#	Article	IF	CITATIONS
73	Linking energy budget to physiological adaptation: How a calcifying gastropod adjusts or succumbs to ocean acidification and warming. Science of the Total Environment, 2020, 715, 136939.	3.9	48
74	Predation by fish on intertidal oysters. Marine Ecology - Progress Series, 1999, 187, 203-211.	0.9	48
75	Ocean acidification boosts larval fish development but reduces the window of opportunity for successful settlement. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151954.	1.2	47
76	Escaping herbivory: ocean warming as a refuge for primary producers where consumer metabolism and consumption cannot pursue. Oecologia, 2015, 179, 1223-1229.	0.9	47
77	Species Interactions Drive Fish Biodiversity Loss in a High-CO2 World. Current Biology, 2017, 27, 2177-2184.e4.	1.8	47
78	HeatwavesÂdiminish the survival of a subtidal gastropod through reduction in energy budget and depletion of energy reserves. Scientific Reports, 2017, 7, 17688.	1.6	47
79	Interactive effects of sedimentation and microtopography on the abundance of subtidal turf-forming algae. Phycologia, 2002, 41, 517-522.	0.6	45
80	Testing for thresholds of ecosystem collapse in seagrass meadows. Conservation Biology, 2017, 31, 1196-1201.	2.4	44
81	Predation by fish on assemblages of intertidal epibiota: effects of predator size and patch size. Journal of Experimental Marine Biology and Ecology, 1999, 241, 15-29.	0.7	43
82	Boosted food web productivity through ocean acidification collapses under warming. Global Change Biology, 2017, 23, 4177-4184.	4.2	43
83	The relationship between large predatory fish and recruitment and mortality of juvenile coral reef-fish on artificial reefs. Journal of Experimental Marine Biology and Ecology, 1997, 209, 261-278.	0.7	42
84	Can strong consumer and producer effects be reconciled to better forecast â€ [~] catastrophic' phase-shifts in marine ecosystems?. Journal of Experimental Marine Biology and Ecology, 2011, 400, 296-301.	0.7	42
85	FORECASTED CO2 MODIFIES THE INFLUENCE OF LIGHT IN SHAPING SUBTIDAL HABITAT1. Journal of Phycology, 2011, 47, 744-752.	1.0	41
86	How can we boost the impact of publications? Try better writing. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 341-343.	3.3	41
87	Response of grazers to sudden nutrient pulses in oligotrophic versus eutrophic conditions. Marine Ecology - Progress Series, 2007, 349, 73-80.	0.9	40
88	Effects of surface orientation on the cover of epibiota. Biofouling, 1999, 14, 219-226.	0.8	39
89	Predatory fish do not always affect the early development of epibiotic assemblages. Journal of Experimental Marine Biology and Ecology, 2001, 260, 1-12.	0.7	39
90	The Footprint of Continental-Scale Ocean Currents on the Biogeography of Seaweeds. PLoS ONE, 2013, 8, e80168.	1.1	39

#	Article	IF	CITATIONS
91	Temperate shelf water dispersal by Australian boundary currents: Implications for population connectivity. Limnology & Oceanography Fluids & Environments, 2013, 3, 295-309.	1.7	38
92	Biogeographic variation in temperature drives performance of kelp gametophytes during warming. Marine Ecology - Progress Series, 2014, 513, 85-96.	0.9	38
93	Response of predators to prey abundance: separating the effects of prey density and patch size. Journal of Experimental Marine Biology and Ecology, 2002, 273, 61-71.	0.7	37
94	The prevalence and production of turf-forming algae on a temperate subtidal coast. Phycologia, 2005, 44, 241-248.	0.6	37
95	Impacts of Near-Future Ocean Acidification and Warming on the Shell Mechanical and Geochemical Properties of Gastropods from Intertidal to Subtidal Zones. Environmental Science & Technology, 2017, 51, 12097-12103.	4.6	37
96	Herbivory mediates the expansion of an algal habitat under nutrient and CO2 enrichment. Marine Ecology - Progress Series, 2014, 497, 87-92.	0.9	36
97	Silent oceans: ocean acidification impoverishes natural soundscapes by altering sound production of the world's noisiest marine invertebrate. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20153046.	1.2	34
98	Experimental effects of kelp canopies on subtidal coralline algae. Austral Ecology, 2001, 26, 102-108.	0.7	34
99	Exclusion of predatory fish on a coral reef: the anticipation, pre-emption and evaluation of some caging artefacts. Journal of Experimental Marine Biology and Ecology, 1997, 213, 181-198.	0.7	33
100	Seagrass response to CO2 contingent on epiphytic algae: indirect effects can overwhelm direct effects. Oecologia, 2014, 176, 871-882.	0.9	32
101	Geographic range determinants of two commercially important marine molluscs. Diversity and Distributions, 2012, 18, 133-146.	1.9	31
102	Context-Dependency in the Effects of Nutrient Loading and Consumers on the Availability of Space in Marine Rocky Environments. PLoS ONE, 2012, 7, e33825.	1.1	30
103	Origins and consequences of global and local stressors: incorporating climatic and non-climatic phenomena that buffer or accelerate ecological change. Marine Biology, 2012, 159, 2633-2639.	0.7	28
104	Organismal homeostasis buffers the effects of abiotic change onÂcommunity dynamics. Ecology, 2016, 97, 2671-2679.	1.5	28
105	Calcifiers can Adjust Shell Building at the Nanoscale to Resist Ocean Acidification. Small, 2020, 16, e2003186.	5.2	28
106	Comparisons of abundance of coral-reef fish: Catch and effort surveys vs visual census. Austral Ecology, 1998, 23, 579-586.	0.7	27
107	Antarctic patterns of shallow subtidal habitat and inhabitants in Wilke's Land. Polar Biology, 2007, 30, 781-788.	0.5	27
108	Valuing coastal water quality: Adelaide, South Australia metropolitan area. Marine Policy, 2015, 52, 116-124.	1.5	27

#	Article	IF	CITATIONS
109	Compensation of nutrient pollution by herbivores in seagrass meadows. Journal of Experimental Marine Biology and Ecology, 2015, 471, 112-118.	0.7	27
110	Boosted nutritional quality of food by CO2 enrichment fails to offset energy demand of herbivores under ocean warming, causing energy depletion and mortality. Science of the Total Environment, 2018, 639, 360-366.	3.9	27
111	Weak Effects of Epibiota on the Abundances of Fishes Associated with Pier Pilings in Sydney Harbour. Environmental Biology of Fishes, 2001, 61, 231-239.	0.4	26
112	The response of encrusting coralline algae to canopy loss: an independent test of predictions on an Antarctic coast. Marine Biology, 2005, 147, 1075-1083.	0.7	26
113	Differences in abalone growth and morphology between locations with high and low food availability: morphologically fixed or plastic traits?. Marine Biology, 2009, 156, 1255-1263.	0.7	26
114	Dispersal and gene flow in the habitat-forming kelp, Ecklonia radiata: relative degrees of isolation across an east - west coastline. Marine and Freshwater Research, 2009, 60, 802.	0.7	26
115	Depth and the Structure of Assemblages of Demersal Fish: Experimental Trawling Along a Temperate Coast. Estuarine, Coastal and Shelf Science, 1999, 48, 483-495.	0.9	25
116	Diversity and depth-related patterns of mobile invertebrates associated with kelp forests. Marine and Freshwater Research, 2007, 58, 589.	0.7	25
117	The sounds of silence: regime shifts impoverish marine soundscapes. Landscape Ecology, 2017, 32, 239-248.	1.9	25
118	A triple trophic boost: How carbon emissions indirectly change a marine food chain. Global Change Biology, 2019, 25, 978-984.	4.2	25
119	Variation at local scales need not impede tests for broader scale patterns. Marine Biology, 2005, 147, 823-831.	0.7	24
120	Antagonistic effects of ocean acidification and warming on hunting sharks. Oikos, 2017, 126, .	1.2	24
121	How calorie-rich food could help marine calcifiers in a CO ₂ -rich future. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190757.	1.2	24
122	The global fall and rise of oyster reefs. Frontiers in Ecology and the Environment, 2021, 19, 118-125.	1.9	24
123	Competition, a Major Factor Structuring Seaweed Communities. Ecological Studies, 2012, , 135-156.	0.4	22
124	Weedy futures: can we benefit from the species that thrive in the marine Anthropocene?. Frontiers in Ecology and the Environment, 2018, 16, 599-604.	1.9	22
125	Limited infaunal response to experimental trawling in previously untrawled areas. ICES Journal of Marine Science, 2001, 58, 1261-1271.	1.2	21
126	Acid dulls the senses: impaired locomotion and foraging performance in a marine mollusc. Animal Behaviour, 2015, 106, 223-229.	0.8	21

#	Article	IF	CITATIONS
127	Ocean acidification alters temperature and salinity preferences in larval fish. Oecologia, 2017, 183, 545-553.	0.9	21
128	Environmental solutions fast-tracked: Reversing public scepticism to public engagement. Biological Conservation, 2021, 253, 108899.	1.9	21
129	Managing Local Coastal Stressors to Reduce the Ecological Effects of Ocean Acidification and Warming. Water (Switzerland), 2013, 5, 1653-1661.	1.2	20
130	Long-term thermal acclimation drives adaptive physiological adjustments of a marine gastropod to reduce sensitivity to climate change. Science of the Total Environment, 2021, 771, 145208.	3.9	20
131	Valuing marine restoration beyond the †too small and too expensive'. Trends in Ecology and Evolution, 2021, 36, 968-971.	4.2	20
132	Ecological performance of construction materials subject to ocean climate change. Marine Environmental Research, 2017, 131, 177-182.	1.1	19
133	On the wrong track: ocean acidification attracts larval fish to irrelevant environmental cues. Scientific Reports, 2018, 8, 5840.	1.6	19
134	Environmental solutions sparked by environmental history. Conservation Biology, 2020, 34, 386-394.	2.4	19
135	Proximity and size of neighbouring habitat affects invertebrate diversity. Marine Ecology - Progress Series, 2005, 296, 31-38.	0.9	19
136	Historical configuration of habitat influences the effects of disturbance on mobile invertebrates. Marine Ecology - Progress Series, 2005, 299, 79-87.	0.9	19
137	Complexity in the relationship between matrix composition and inter-patch distance in fragmented habitats. Marine Biology, 2008, 154, 117-125.	0.7	18
138	Adaptive responses of fishes to climate change: Feedback between physiology and behaviour. Science of the Total Environment, 2019, 692, 1242-1249.	3.9	18
139	Multiâ€species restoration accelerates recovery of extinguished oyster reefs. Journal of Applied Ecology, 2021, 58, 286-294.	1.9	18
140	The Loss of Natural Habitats and the Addition of Artificial Substrata. Ecological Studies, 2009, , 269-280.	0.4	18
141	To what extent do geographic and associated environmental variables correlate with kelp morphology across temperate Australia?. Marine and Freshwater Research, 2005, 56, 877.	0.7	17
142	A novel method for mapping reefs and subtidal rocky habitats using artificial neural networks. Ecological Modelling, 2011, 222, 2606-2614.	1.2	17
143	Contemporary reliance on bicarbonate acquisition predicts increased growth of seagrass Amphibolis antarctica in a high-CO2 world. , 2014, 2, cou052-cou052.		17
144	Habitat restoration: Early signs and extent of faunal recovery relative to seagrass recovery. Estuarine, Coastal and Shelf Science, 2016, 171, 51-57.	0.9	17

#	Article	IF	CITATIONS
145	Cuing oyster recruitment with shell and rock: implications for timing reef restoration. Restoration Ecology, 2020, 28, 506-511.	1.4	17
146	Sustainability in Near-shore Marine Systems: Promoting Natural Resilience. Sustainability, 2010, 2, 2593-2600.	1.6	16
147	Ocean acidification may slow the pace of tropicalization of temperate fish communities. Nature Climate Change, 2021, 11, 249-256.	8.1	15
148	Ocean acidification boosts reproduction in fish via indirect effects. PLoS Biology, 2021, 19, e3001033.	2.6	14
149	Predicting the Distribution of Commercially Important Invertebrate Stocks under Future Climate. PLoS ONE, 2012, 7, e46554.	1.1	14
150	Disturbance initiates diversity in recruitment of canopy-forming algae: interactive effects of canopy-thinning and substratum availability. Phycologia, 2005, 44, 632-639.	0.6	13
151	Moving ocean acidification research beyond a simple science: Investigating ecological change and their stabilizers. Food Webs, 2017, 13, 53-59.	0.5	13
152	Fine-scale effects of sedentary urchins on canopy and understory algae. Journal of Experimental Marine Biology and Ecology, 2012, 411, 66-69.	0.7	12
153	Future climate stimulates population out-breaks by relaxing constraints on reproduction. Scientific Reports, 2016, 6, 33383.	1.6	12
154	Design and performance evaluation of a mesocosm facility and techniques to simulate ocean acidification and warming. Limnology and Oceanography: Methods, 2016, 14, 278-291.	1.0	12
155	Microhabitat change alters abundances of competing species and decreases species richness under ocean acidification. Science of the Total Environment, 2018, 645, 615-622.	3.9	12
156	Habitat heterogeneity as a consequence of substratum-orientation and kelp-canopy: Relating interdependent responses to common patterns. Journal of Experimental Marine Biology and Ecology, 2007, 343, 127-137.	0.7	11
157	Asymmetric patterns of recovery in two habitat forming seagrass species following simulated overgrazing by urchins. Journal of Experimental Marine Biology and Ecology, 2013, 448, 114-120.	0.7	11
158	Historical changes in mean trophic level of southern Australian fisheries. Marine and Freshwater Research, 2014, 65, 884.	0.7	11
159	Beyond spatial and temporal averages: ecological responses to extreme events may be exacerbated by local disturbances. Climate Change Responses, 2015, 2, .	2.6	11
160	CO2 emissions boost the benefits of crop production by farming damselfish. Nature Ecology and Evolution, 2018, 2, 1223-1226.	3.4	11
161	Functional loss in herbivores drives runaway expansion of weedy algae in a near-future ocean. Science of the Total Environment, 2019, 695, 133829.	3.9	11
162	Eutrophication science: moving into the future. Trends in Ecology and Evolution, 2009, 24, 527-528.	4.2	10

#	Article	IF	CITATIONS
163	Effects of food origin and availability on sea urchin condition and feeding behaviour. Journal of Sea Research, 2012, 68, 1-5.	0.6	10
164	Reducing per capita food supply alters urchin condition and habitat. Marine Biology, 2012, 159, 967-973.	0.7	10
165	Ecological Resistance – Why Mechanisms Matter: A Reply to Sundstrom et al Trends in Ecology and Evolution, 2016, 31, 413-414.	4.2	10
166	Ocean life breaking rules by building shells in acidic extremes. Current Biology, 2017, 27, R1104-R1106.	1.8	10
167	Irreversible behavioural impairment of fish starts early: Embryonic exposure to ocean acidification. Marine Pollution Bulletin, 2018, 133, 562-567.	2.3	10
168	Balancing the Benefits of Optimism and Pessimism in Conservation: a Response to Kidd, Bekessy, and Garrard. Trends in Ecology and Evolution, 2019, 34, 692-693.	4.2	10
169	Detecting benthic responses to human-induced change: effectiveness of alternate taxonomic classification and indices. Marine Ecology - Progress Series, 2008, 358, 75-84.	0.9	10
170	The Subtidal Ecology of Rocky Coasts. , 0, , 392-418.		10
171	Oyster larvae swim along gradients of sound. Journal of Applied Ecology, 2022, 59, 1815-1824.	1.9	10
172	Patterns of association between canopy-morphology and understorey assemblages across temperate Australia. Estuarine, Coastal and Shelf Science, 2005, 63, 133-141.	0.9	9
173	Fur seal activity moderates the effects of an Australian marine sanctuary on temperate reef fish. Biological Conservation, 2015, 182, 205-214.	1.9	9
174	Funding Conservation through an Emerging Social Movement. Trends in Ecology and Evolution, 2020, 35, 3-6.	4.2	9
175	Natural CO ₂ seeps reveal adaptive potential to ocean acidification in fish. Evolutionary Applications, 2021, 14, 1794-1806.	1.5	9
176	Repairing recruitment processes with sound technology to accelerate habitat restoration. Ecological Applications, 2021, 31, e02386.	1.8	9
177	Better Writing in Scientific Publications Builds Reader Confidence and Understanding. Frontiers in Psychology, 2021, 12, 714321.	1.1	9
178	Interactive effects of shade and surface orientation on the recruitment of spirorbid polychaetes. Austral Ecology, 2001, 26, 109-115.	0.7	9
179	Disturbance mediates the effects of nutrients on developing assemblages of epibiota. Austral Ecology, 2008, 33, 951-962.	0.7	8
180	Species interactions can maintain resistance of subtidal algal habitats to an increasingly modified world. Global Ecology and Conservation, 2015, 4, 549-558.	1.0	8

#	Article	IF	CITATIONS
181	A test of metabolic and consumptive responses to local and global perturbations: enhanced resources stimulate herbivores to counter expansion of weedy species. Marine and Freshwater Research, 2016, 67, 96.	0.7	8
182	Shining a Brighter Light on Solution Science in Ecology. One Earth, 2020, 2, 16-19.	3.6	8
183	Human pressures and the emergence of novel marine ecosystems. , 2020, , 456-535.		8
184	Longitudinal variation and effects of habitat on biodiversity of Australasian temperate reef fishes. Journal of Biogeography, 2014, 41, 2128-2139.	1.4	7
185	Misconceptions about analyses of Australian seaweed collections. Phycologia, 2014, 53, 215-220.	0.6	6
186	Incorporating historical data into aquaculture planning. ICES Journal of Marine Science, 2016, 73, 1427-1436.	1.2	6
187	Marine Biodiversity and Climate Change. , 2014, , 181-187.		6
188	Rapid restoration of belowground structure and fauna of a seagrass habitat. Restoration Ecology, 2021, 29, .	1.4	5
189	Encounter Rates of a Juvenile Reef Fish with Small and Predatory Fishes. Copeia, 2000, 2000, 36-41.	1.4	4
190	Honing the Geoengineering Strategy. Science, 2010, 327, 144-145.	6.0	4
191	Shared patterns of species turnover between seaweeds and seed plants break down at increasing distances from the sea. Ecology and Evolution, 2014, 4, 27-34.	0.8	4
192	â€~Neo-Europe' and its ecological consequences: the example of systematic degradation in Australia's inland fisheries. Biology Letters, 2016, 12, 20150774.	1.0	4
193	Spatial and temporal monitoring of coastal water quality: refining the way we consider, gather, and interpret patterns. Aquatic Biology, 2009, 5, 157-166.	0.5	4
194	Creativity: The Stronger, Blacker Sheep behind Great Papers – A Reply to Falkenberg and Tubb. Trends in Ecology and Evolution, 2017, 32, 895-896.	4.2	3
195	Let Scientific Writing Evolve, Not Stagnate. Trends in Ecology and Evolution, 2018, 33, 812-813.	4.2	3
196	Ecosystem Resilience and Resistance to Climate Change. , 2014, , 133-139.		3
197	Shark teeth can resist ocean acidification. Global Change Biology, 2022, , .	4.2	3
198	Phenotypic responses in fish behaviour narrow as climate ramps up. Climatic Change, 2022, 171, 1.	1.7	3

#	Article	IF	CITATIONS
199	Recentering the role of marine restoration science to bolster community stewardship. Earth System Governance, 2022, 13, 100149.	2.1	3
200	Climate Change: Implications for Ecotoxicological Environmental Impact Assessment. Journal of Environmental Engineering, ASCE, 2017, 143, .	0.7	2
201	Positive species interactions strengthen in a high-CO 2 ocean. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210475.	1.2	2
202	Animal Minds, Social Change, and the Future of Fisheries Science. Frontiers in Marine Science, 2021, 8, .	1.2	2
203	The COVID-19 lockdown provides clues for better science communication on environmental recovery. Environmental Conservation, 0, , 1-3.	0.7	2
204	Climate Donations Inspired by Evidence-Based Fundraising. Frontiers in Psychology, 2022, 13, 768823.	1.1	2
205	By recognizing the broader landscape, we may better anticipate the outcome of local processes: editorial comment on the feature article by Miguel Matias. Marine Biology, 2013, 160, 491-491.	0.7	1
206	Increasing Use of Human-Dominated Habitats as CO2 Emissions Warm and Acidify Oceans. Estuaries and Coasts, 2018, 41, 1660-1666.	1.0	1
207	Advancing Government Legitimacy through the Scientific Study of Sentience. World Futures, 2021, 77, 395-404.	0.8	1
208	Shifts in Abiotic Variables and Consequences for Diversity. Ecological Studies, 2009, , 257-268.	0.4	1
209	<i>Marine Ecology</i> . <i>Edited by</i> Sean D.ÂConnell <i>and</i> , Bronwyn M.ÂGillanders. Oxford and New York: Oxford University Press. \$75.00 (paper). xxxiii + 630 p.; ill.; index. 978â€0â€19â€555302â€4. 2007 Quarterly Review of Biology, 2008, 83, 200-201.	0.0	0
210	The Past and Future Ecologies of Australasian Kelp Forests. , 2019, , 414-430.		0
211	Marine Benthic Productivity 0 767-771.		0