
## Makoto Kataoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4956815/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Interspecies differences in gastrointestinal physiology affecting the in vivo performance of oral pharmaceutical solid dosage forms. Journal of Drug Delivery Science and Technology, 2022, 67, 102923.                                                                    | 1.4 | 1         |
| 2  | Discovery of benzyloxyphenyl- and phenethylphenyl-imidazole derivatives as a new class of ante–drug type boosters. Bioorganic and Medicinal Chemistry Letters, 2022, 72, 128868.                                                                                           | 1.0 | 1         |
| 3  | In Vitro Sensitivity Analysis of the Gastrointestinal Dissolution Profile of Weakly Basic Drugs in the<br>Stomach-to-Intestine Fluid Changing System: Explanation for Variable Plasma Exposure after Oral<br>Administration. Molecular Pharmaceutics, 2021, 18, 1711-1719. | 2.3 | 8         |
| 4  | Bioequivalence of Oral Drug Products in the Healthy and Special Populations: Assessment and<br>Prediction Using a Newly Developed In Vitro System "BE Checker― Pharmaceutics, 2021, 13, 1136.                                                                              | 2.0 | 6         |
| 5  | Maximizing the Oral Bioavailability of Poorly Water-Soluble Drugs Using Novel Oil-Like Materials in<br>Lipid-Based Formulations. Molecular Pharmaceutics, 2021, 18, 3281-3289.                                                                                             | 2.3 | 5         |
| 6  | New biphasic system in side-by-side chambers for testing drug dissolution and permeation in vitro (BiDP system). Journal of Drug Delivery Science and Technology, 2021, 65, 102747.                                                                                        | 1.4 | 1         |
| 7  | In Vitro–In Vivo Correlation in Cocrystal Dissolution: Consideration of Drug Release Profiles Based on Coformer Dissolution and Absorption Behavior. Molecular Pharmaceutics, 2021, 18, 4122-4130.                                                                         | 2.3 | 10        |
| 8  | Challenge for oral delivery of middle-molecular drugs: Use of osmolarity-sensitive liposome as a drug carrier in the GI tract. Journal of Drug Delivery Science and Technology, 2020, 56, 101041.                                                                          | 1.4 | 5         |
| 9  | Biopredictive in vitro testing methods to assess intestinal drug absorption from supersaturating dosage forms. Journal of Drug Delivery Science and Technology, 2020, 56, 101275.                                                                                          | 1.4 | 6         |
| 10 | Impact of Dietary Intake of Medium-Chain Triacylglycerides on the Intestinal Absorption of Poorly<br>Permeable Compounds. Molecular Pharmaceutics, 2020, 17, 212-218.                                                                                                      | 2.3 | 6         |
| 11 | An enteric polymer mitigates the effects of gastric pH on oral absorption of poorly soluble weak acid<br>drugs from supersaturable formulations: A case study with dantrolene. European Journal of<br>Pharmaceutics and Biopharmaceutics, 2020, 155, 29-36.                | 2.0 | 6         |
| 12 | In vivo screening of oral formulations using rats: Effects of ingested water volume on oral<br>absorption of BCS class I and III drugs from immediate-release formulations. Journal of Drug Delivery<br>Science and Technology, 2020, 60, 102100.                          | 1.4 | 3         |
| 13 | Species differences in the drug–drug interaction between atorvastatin and cyclosporine: In vivo<br>study using a stable isotope-IV method in rats and dogs. European Journal of Pharmaceutical Sciences,<br>2020, 152, 105409.                                             | 1.9 | 5         |
| 14 | Control of oral absorption of nutritional supplement using lipid-based formulations (LBFs):<br>Application to the poorly water-soluble ingredient. Journal of Drug Delivery Science and Technology,<br>2020, 57, 101675.                                                   | 1.4 | 3         |
| 15 | Analysis of the Complicated Nonlinear Pharmacokinetics of Orally Administered Telmisartan in Rats<br>Using a Stable Isotope-IV Method. Journal of Pharmaceutical Sciences, 2019, 108, 2774-2780.                                                                           | 1.6 | 2         |
| 16 | InÂVitro Assessment of Supersaturation/Precipitation and Biological Membrane Permeation of Poorly<br>Water-Soluble Drugs: A Case Study With Albendazole and Ketoconazole. Journal of Pharmaceutical<br>Sciences, 2019, 108, 2580-2587.                                     | 1.6 | 13        |
| 17 | Application of an InÂVitro Dissolution/Permeation System to Early Screening of Oral Formulations of<br>Poorly Soluble, Weakly Basic Drugs Containing an Acidic pH-Modifier. Journal of Pharmaceutical<br>Sciences, 2018, 107, 2404-2410.                                   | 1.6 | 7         |
| 18 | Design of supersaturable formulation of telmisartan with pH modifier: in vitro study on dissolution and precipitation. Journal of Pharmaceutical Investigation, 2017, 47, 163-171.                                                                                         | 2.7 | 14        |

Μακοτο Καταοκα

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Quantitative Analysis of the Transporter-Mediated Drug-Drug Interaction Between Atorvastatin and<br>Rifampicin Using a Stable Isotope-IV Method. Journal of Pharmaceutical Sciences, 2017, 106, 2671-2677.                                                                    | 1.6 | 3         |
| 20 | Advantage of the Dissolution/Permeation System for Estimating Oral Absorption of Drug Candidates in the Drug Discovery Stage. Molecular Pharmaceutics, 2016, 13, 1564-1574.                                                                                                   | 2.3 | 26        |
| 21 | Characterizing the dissolution profiles of supersaturable salts, cocrystals, and solvates to enhance<br>in vivo oral absorption. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 103, 192-199.                                                                  | 2.0 | 40        |
| 22 | Quantitative analysis of pharmacokinetic profiles of verapamil and drug–drug interactions induced<br>by a CYP inhibitor using a stable isotope-labeled compound. Drug Metabolism and Pharmacokinetics,<br>2016, 31, 405-410.                                                  | 1.1 | 5         |
| 23 | Evaluation of dose-dependent oral absorption of a newly developed drug candidate: InÂvitro-inÂvivo<br>correlation. Journal of Drug Delivery Science and Technology, 2016, 31, 160-166.                                                                                        | 1.4 | 3         |
| 24 | Effects of gastric pH on oral drug absorption: In vitro assessment using a dissolution/permeation system reflecting the gastric dissolution process. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 101, 103-111.                                              | 2.0 | 46        |
| 25 | An Assessment of the Oral Bioavailability of Three Ca-Channel Blockers Using a Cassette-Microdose<br>Study: A New Strategy for Streamlining Oral Drug Development. Journal of Pharmaceutical Sciences,<br>2015, 104, 3154-3161.                                               | 1.6 | 9         |
| 26 | Interaction with Mixed Micelles in the Intestine Attenuates the Permeation Enhancing Potential of Alkyl-Maltosides. Molecular Pharmaceutics, 2015, 12, 2245-2253.                                                                                                             | 2.3 | 35        |
| 27 | Analysis of Intra- and Intersubject Variability in Oral Drug Absorption in Human Bioequivalence<br>Studies of 113 Generic Products. Molecular Pharmaceutics, 2015, 12, 4405-4413.                                                                                             | 2.3 | 42        |
| 28 | A new in vitro system for evaluation of passive intestinal drug absorption: Establishment of a double<br>artificial membrane permeation assay. European Journal of Pharmaceutics and Biopharmaceutics, 2014,<br>88, 840-846.                                                  | 2.0 | 14        |
| 29 | <i>In Vitro</i> – <i>in Vivo</i> Correlation of the Effect of Supersaturation on the Intestinal Absorption of BCS Class 2 Drugs. Molecular Pharmaceutics, 2014, 11, 746-754.                                                                                                  | 2.3 | 49        |
| 30 | Effect of Excipients on the Particle Size of Precipitated Pioglitazone in the Gastrointestinal Tract:<br>Impact on Bioequivalence. AAPS Journal, 2014, 16, 1119-1127.                                                                                                         | 2.2 | 21        |
| 31 | Inhibition mechanism of hydroxypropyl methylcellulose acetate succinate on drug crystallization in gastrointestinal fluid and drug permeability from a supersaturated solution. European Journal of Pharmaceutical Sciences, 2014, 62, 293-300.                               | 1.9 | 33        |
| 32 | Measurement of Drug Concentration in the Stomach After Intragastric Administration of Drug<br>Solution to Healthy Volunteers: Analysis of Intragastric Fluid Dynamics and Drug Absorption.<br>Pharmaceutical Research, 2013, 30, 951-958.                                     | 1.7 | 35        |
| 33 | Assessment of absorption potential of poorly water-soluble drugs by using the dissolution/permeation system. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1317-1324.                                                                                     | 2.0 | 31        |
| 34 | Preparation of fenofibrate solid dispersion using electrospray deposition and improvement in oral absorption by instantaneous post-heating of the formulation. International Journal of Pharmaceutics, 2013, 450, 123-128.                                                    | 2.6 | 43        |
| 35 | Dynamic Analysis of Fluid Distribution in the Gastrointestinal Tract in Rats: Positron Emission<br>Tomography Imaging after Oral Administration of Nonabsorbable Marker,<br>[ <sup>18</sup> F]Deoxyfluoropoly(ethylene glycol). Molecular Pharmaceutics, 2013, 10, 2261-2269. | 2.3 | 31        |
| 36 | Establishment of MDCKII Cell Monolayer with Metabolic Activity by CYP3A4 Transduced with Recombinant Adenovirus. Drug Metabolism and Pharmacokinetics, 2013, 28, 125-131.                                                                                                     | 1.1 | 5         |

Μακότο Καταόκα

| #  | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Performance of cell-penetrating peptide-linked polymers physically mixed with poorly<br>membrane-permeable molecules on cell membranes. European Journal of Pharmaceutics and<br>Biopharmaceutics, 2012, 81, 64-73.                                                        | 2.0 | 21        |
| 38 | Integrating drug permeability with dissolution profile to develop IVIVC. Biopharmaceutics and Drug Disposition, 2012, 33, 354-365.                                                                                                                                         | 1.1 | 30        |
| 39 | Application of Dissolution/Permeation System for Evaluation of Formulation Effect on Oral<br>Absorption of Poorly Water-Soluble Drugs in Drug Development. Pharmaceutical Research, 2012, 29,<br>1485-1494.                                                                | 1.7 | 78        |
| 40 | In Vitro Dissolution/Permeation System to Predict the Oral Absorption of Poorly Water-Soluble<br>Drugs: Effect of Food and Dose Strength on It. Biological and Pharmaceutical Bulletin, 2011, 34,<br>401-407.                                                              | 0.6 | 42        |
| 41 | Estimation of P-glycoprotein-mediated efflux in the oral absorption of P-gp substrate drugs from simultaneous analysis of drug dissolution and permeation. European Journal of Pharmaceutical Sciences, 2011, 44, 544-551.                                                 | 1.9 | 24        |
| 42 | Preparation of spray-dried microparticles using Gelucire 44/14 and porous calcium silicate or spherical microcrystalline cellulose to enhance transport of water-insoluble pranlukast hemihydrate across Caco-2 monolayers. Advanced Powder Technology, 2011, 22, 623-628. | 2.0 | 7         |
| 43 | Scale-up of in vitro permeation assay data to human intestinal permeability using pore theory.<br>International Journal of Pharmaceutics, 2011, 414, 69-76.                                                                                                                | 2.6 | 4         |
| 44 | PET Imaging of the Gastrointestinal Absorption of Orally Administered Drugs in Conscious and Anesthetized Rats. Journal of Nuclear Medicine, 2011, 52, 249-256.                                                                                                            | 2.8 | 45        |
| 45 | Prediction of food effect by bile micelles on oral drug absorption considering free fraction in in in intestinal fluid. European Journal of Pharmaceutical Sciences, 2010, 40, 118-124.                                                                                    | 1.9 | 79        |
| 46 | Mechanisms of Membrane Transport of Poorly Soluble Drugs: Role of Micelles in Oral Absorption Processes. Journal of Pharmaceutical Sciences, 2010, 99, 1336-1345.                                                                                                          | 1.6 | 85        |
| 47 | IVIVC in oral absorption for fenofibrate immediate release tablets using a dissolution/permeation system. Journal of Pharmaceutical Sciences, 2009, 98, 2001-2009.                                                                                                         | 1.6 | 69        |
| 48 | Effect of Food Intake on the Oral Absorption of Poorly Water-Soluble Drugs: In Vitro Assessment of<br>Drug Dissolution and Permeation Assay System. Journal of Pharmaceutical Sciences, 2006, 95,<br>2051-2061.                                                            | 1.6 | 90        |
| 49 | In vitro system to evaluate oral absorption of poorly water-soluble drugs: simultaneous analysis on dissolution and permeation of drugs. Pharmaceutical Research, 2003, 20, 1674-1680.                                                                                     | 1.7 | 134       |
| 50 | Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. European<br>Journal of Pharmaceutical Sciences, 2000, 10, 195-204.                                                                                                                 | 1.9 | 464       |