
## Satoshi Nagaoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4956358/publications.pdf Version: 2024-02-01



**SATOSHI ΝΑCAOKA** 

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Identification of Novel Hypocholesterolemic Peptides Derived from Bovine Milk β-Lactoglobulin.<br>Biochemical and Biophysical Research Communications, 2001, 281, 11-17.                                                   | 2.1 | 347       |
| 2  | A Novel Protein C-Phycocyanin Plays a Crucial Role in the Hypocholesterolemic Action of Spirulina platensis Concentrate in Rats. Journal of Nutrition, 2005, 135, 2425-2430.                                               | 2.9 | 168       |
| 3  | Soy Protein Peptic Hydrolysate with Bound Phospholipids Decreases Micellar Solubility and<br>Cholesterol Absorption in Rats and Caco-2 Cells. Journal of Nutrition, 1999, 129, 1725-1730.                                  | 2.9 | 129       |
| 4  | Soystatin (VAWWMY), a Novel Bile Acid-Binding Peptide, Decreased Micellar Solubility and Inhibited<br>Cholesterol Absorption in Rats. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1738-1741.                     | 1.3 | 84        |
| 5  | Soy Protein Hydrolyzate with Bound Phospholipids Reduces Serum Cholesterol Levels in<br>Hypercholesterolemic Adult Male Volunteers. Bioscience, Biotechnology and Biochemistry, 2001, 65,<br>72-78.                        | 1.3 | 80        |
| 6  | Egg ovomucin attenuates hypercholesterolemia in rats and inhibits cholesterol absorption in Caco-2 cells. Lipids, 2002, 37, 267-272.                                                                                       | 1.7 | 68        |
| 7  | A novel regulatory pathway for cholesterol degradation via lactostatin. Biochemical and Biophysical<br>Research Communications, 2007, 352, 697-702.                                                                        | 2.1 | 62        |
| 8  | Tiliroside, a glycosidic flavonoid, inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract. Molecular Nutrition and Food Research, 2012, 56, 435-445.                                        | 3.3 | 62        |
| 9  | Interaction between Tea Polyphenols and Bile Acid Inhibits Micellar Cholesterol Solubility. Journal of<br>Agricultural and Food Chemistry, 2016, 64, 204-209.                                                              | 5.2 | 56        |
| 10 | Serum Cholesterol Reduction and Cholesterol Absorption Inhibition in CaCo-2 Cells by a Soyprotein<br>Peptic Hydrolyzate. Bioscience, Biotechnology and Biochemistry, 1997, 61, 354-356.                                    | 1.3 | 55        |
| 11 | Identification of a Novel Hypocholesterolemic Protein, Major Royal Jelly Protein 1, Derived from Royal<br>Jelly. PLoS ONE, 2014, 9, e105073.                                                                               | 2.5 | 55        |
| 12 | Structure-function properties of hypolipidemic peptides. Journal of Food Biochemistry, 2019, 43, e12539.                                                                                                                   | 2.9 | 44        |
| 13 | Cholesterol-lowering effect of rice bran protein containing bile acid-binding proteins. Bioscience,<br>Biotechnology and Biochemistry, 2015, 79, 456-461.                                                                  | 1.3 | 37        |
| 14 | Epigallocatechin gallate changes mRNA expression level of genes involved in cholesterol metabolism<br>in hepatocytes. British Journal of Nutrition, 2012, 107, 769-773.                                                    | 2.3 | 36        |
| 15 | The Hypocholesterolemic Activity of Transgenic Rice Seed Accumulating Lactostatin, a Bioactive<br>Peptide Derived from Bovine Milk β-Lactoglobulin. Journal of Agricultural and Food Chemistry, 2011, 59,<br>3845-3850.    | 5.2 | 33        |
| 16 | Effects of Whey Protein and Casein on the Plasma and Liver Lipids in Rats. Agricultural and Biological<br>Chemistry, 1991, 55, 813-818.                                                                                    | 0.3 | 30        |
| 17 | Identification of a novel cholesterol-lowering dipeptide, phenylalanine-proline (FP), and its<br>down-regulation of intestinal ABCA1 in hypercholesterolemic rats and Caco-2 cells. Scientific<br>Reports, 2019, 9, 19416. | 3.3 | 29        |
| 18 | High-level production of lactostatin, a hypocholesterolemic peptide, in transgenic rice using soybean<br>A1aB1b as carrier. Transgenic Research, 2013, 22, 621-629.                                                        | 2.4 | 27        |

**Satoshi** Nagaoka

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Screening of peptides with a high affinity to bile acids using peptide arrays and a computational analysis. Journal of Bioscience and Bioengineering, 2011, 112, 92-97.                                                        | 2.2 | 26        |
| 20 | Soluble soy protein peptic hydrolysate stimulates adipocyte differentiation in 3T3‣1 cells. Molecular<br>Nutrition and Food Research, 2013, 57, 1435-1445.                                                                     | 3.3 | 25        |
| 21 | Epigallocatechin gallate induces an upâ€regulation of LDL receptor accompanied by a reduction of<br>PCSK9 via the annexin A2â€independent pathway in HepG2 cells. Molecular Nutrition and Food Research,<br>2017, 61, 1600836. | 3.3 | 23        |
| 22 | Anti-obesity activity of hen egg anti-lipase immunoglobulin yolk, a novel pancreatic lipase inhibitor.<br>Nutrition and Metabolism, 2013, 10, 70.                                                                              | 3.0 | 22        |
| 23 | A Cattle Heart Protein Hydrolysate Ameliorates Hypercholesterolemia Accompanied by Suppression of the Cholesterol Absorption in Rats and Caco-2 Cells. Bioscience, Biotechnology and Biochemistry, 2009, 73, 607-612.          | 1.3 | 17        |
| 24 | Ellagic acid affects mRNA expression levels of genes that regulate cholesterol metabolism in HepG2 cells. Bioscience, Biotechnology and Biochemistry, 2019, 83, 952-959.                                                       | 1.3 | 15        |
| 25 | Development of a novel transgenic rice with hypocholesterolemic activity via high-level<br>accumulation of the α′ subunit of soybean β-conglycinin. Transgenic Research, 2014, 23, 609-620.                                    | 2.4 | 14        |
| 26 | Molecular Mechanism by Which Tea Catechins Decrease the Micellar Solubility of Cholesterol.<br>Journal of Agricultural and Food Chemistry, 2019, 67, 7128-7135.                                                                | 5.2 | 14        |
| 27 | Plant-derived peptides improving lipid and glucose metabolism. Peptides, 2021, 142, 170577.                                                                                                                                    | 2.4 | 14        |
| 28 | IIAEK Targets Intestinal Alkaline Phosphatase (IAP) to Improve Cholesterol Metabolism with a Specific Activation of IAP and Downregulation of ABCA1. Nutrients, 2020, 12, 2859.                                                | 4.1 | 13        |
| 29 | Effects of Dipeptides Having a C-Terminal Lysine on the Cholesterol 7α-Hydroxylase mRNA Level in HepG2<br>Cells. Bioscience, Biotechnology and Biochemistry, 2007, 71, 821-825.                                                | 1.3 | 11        |
| 30 | Identification of the active protein in rice bran protein having an inhibitory activity of cholesterol micellar solubility. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1216-1219.                                   | 1.3 | 10        |
| 31 | Synthesis of oolongtheanins and their inhibitory activity on micellar cholesterol solubility in vitro.<br>Bioorganic and Medicinal Chemistry Letters, 2015, 25, 749-752.                                                       | 2.2 | 9         |
| 32 | Mystery of Cholesterol-Lowering Peptides, Lactostatin and Soystatin. Journal of Agricultural and Food Chemistry, 2018, 66, 3993-3994.                                                                                          | 5.2 | 9         |
| 33 | Epigallocatechin Gallate Induces Upregulation of LDL Receptor via the 67ÂkDa Laminin<br>Receptorâ€Independent Pathway in HepG2 Cells. Molecular Nutrition and Food Research, 2020, 64,<br>e1901036.                            | 3.3 | 9         |
| 34 | Identification of peptides in blood following oral administration of Î <sup>2</sup> -conglycinin to Wistar rats. Food<br>Chemistry, 2021, 341, 128197.                                                                         | 8.2 | 9         |
| 35 | Anti-Obesity and Hypocholesterolemic Actions of Protamine-Derived Peptide RPR (Arg-Pro-Arg) and Protamine in High-Fat Diet-Induced C57BL/6J Mice. Nutrients, 2021, 13, 2501.                                                   | 4.1 | 9         |
| 36 | l-Cysteine-induced up-regulation of the low-density lipoprotein receptor is mediated via a<br>transforming growth factor-alpha signalling pathway. Biochemical and Biophysical Research<br>Communications, 2014, 444, 401-405. | 2.1 | 5         |

Satoshi Nagaoka

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Lactostatin (IIAEK) and CSPHP. , 2006, , 168-185.                                                                                                                                                                          |     | 5         |
| 38 | Serum Cholesterol-Lowering Effects of a Broccoli and Cabbage Mixture in Rats: Comparison with Spinach, Celery, Carrot, and Tomato. ACS Symposium Series, 2008, , 454-464.                                                  | 0.5 | 4         |
| 39 | Novel Approach for Simultaneous Analysis of Peptide Metabolites from Orally Administered Glycinin<br>in Rat Bloodstream by Coumarin-Tagged MALDI–MS. Journal of Agricultural and Food Chemistry, 2021,<br>69, 14840-14848. | 5.2 | 4         |
| 40 | Reactivity of the High-MrMucin-like Glycoproteins in Human Milk with Monoclonal Antibodies HMFG-1 and HMFG-2. Bioscience, Biotechnology and Biochemistry, 1993, 57, 1001-1003.                                             | 1.3 | 2         |
| 41 | Peptide–Lipid Interactions and Functionalities. , 2012, , 263-276.                                                                                                                                                         |     | 1         |
| 42 | Fat and Health. Oleoscience, 2014, 14, 237-242.                                                                                                                                                                            | 0.0 | 1         |