
Felix V Kaminsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/495562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbonates from the lower part of transition zone or even the lower mantle. Earth and Planetary Science Letters, 2007, 260, 1-9.	4.4	232
2	Mineralogy of the lower mantle: A review of â€~super-deep' mineral inclusions in diamond. Earth-Science Reviews, 2012, 110, 127-147.	9.1	222
3	High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond-forming fluid. Lithos, 2009, 112, 648-659.	1.4	181
4	Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contributions To Mineralogy and Petrology, 2005, 149, 430-445.	3.1	147
5	Inclusions of nanocrystalline hydrous aluminium silicate "Phase Egg―in superdeep diamonds from Juina (Mato Grosso State, Brazil). Earth and Planetary Science Letters, 2007, 259, 384-399.	4.4	98
6	CARBONATITIC INCLUSIONS IN DEEP MANTLE DIAMOND FROM JUINA, BRAZIL: NEW MINERALS IN THE CARBONATE-HALIDE ASSOCIATION. Canadian Mineralogist, 2013, 51, 669-688.	1.0	84
7	Unusual micro- and nano-inclusions in diamonds from the Juina Area, Brazil. Earth and Planetary Science Letters, 2009, 286, 292-303.	4.4	82
8	Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos, 2009, 112, 833-842.	1.4	61
9	A MICROINCLUSION OF LOWER-MANTLE ROCK AND OTHER MINERAL AND NITROGEN LOWER-MANTLE INCLUSIONS IN A DIAMOND. Canadian Mineralogist, 2015, 53, 83-104.	1.0	47
10	A primary natrocarbonatitic association in the Deep Earth. Mineralogy and Petrology, 2016, 110, 387-398.	1.1	47
11	Nitrides and carbonitrides from the lowermost mantle and their importance in the search for Earth's "lost―nitrogen. American Mineralogist, 2017, 102, 1667-1676.	1.9	43
12	Oxidation potential in the Earth's lower mantle as recorded by ferropericlase inclusions in diamond. Earth and Planetary Science Letters, 2015, 417, 49-56.	4.4	40
13	The Earth's Lower Mantle. Springer Geology, 2017, , .	0.3	40
14	The relationship between the distribution of nitrogen impurity centres in diamond crystals and their internal structure and mechanism of growth. Lithos, 2004, 77, 255-271.	1.4	30
15	Diamond potential of metamorphic rocks in the Kokchetav Massif, northern Kazakhstan. European Journal of Mineralogy, 2008, 20, 395-413.	1.3	30
16	Neoproterozoic â€~anomalous' kimberlites of Guaniamo, Venezuela: Mica kimberlites of â€~isotopic transitional' type. Lithos, 2004, 76, 565-590.	1.4	29
17	Rare earth element patterns of carbonado and yakutite: evidence for their crustal origin. Mineralogical Magazine, 1993, 57, 607-611.	1.4	27
18	Kimberlites from the Wawa area, Ontario. Canadian Journal of Earth Sciences, 2002, 39, 1819-1838.	1.3	27

Felix V Kaminsky

#	Article	IF	CITATIONS
19	Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil. Lithos, 2010, 114, 16-29.	1.4	27
20	Three-Dimensional Fe Speciation of an Inclusion Cloud within an Ultradeep Diamond by Confocal μ-X-ray Absorption Near Edge Structure: Evidence for Late Stage Overprint. Analytical Chemistry, 2011, 83, 6294-6299.	6.5	26
21	Prognostication of primary diamond deposits. Journal of Geochemical Exploration, 1995, 53, 167-182.	3.2	20
22	Carbonado-like diamond from the Avacha active volcano in Kamchatka, Russia. Lithos, 2016, 265, 222-236.	1.4	20
23	Iron partitioning in natural lower-mantle minerals: Toward a chemically heterogeneous lower mantle. American Mineralogist, 2017, 102, 824-832.	1.9	17
24	Layered mantle structure beneath the western Guyana Shield, Venezuela: Evidence from diamonds and xenocrysts in Guaniamo kimberlites. Geochimica Et Cosmochimica Acta, 2006, 70, 192-205.	3.9	16
25	Enigmatic diamonds from the Tolbachik volcano, Kamchatka. American Mineralogist, 2020, 105, 498-509.	1.9	12
26	GEOLOGY AND STRUCTURE OF THE GUANIAMO DIAMONDIFEROUS KIMBERLITE SHEETS, SOUTH-WEST VENEZUELA. Revista Brasileira De Geociências, 2001, 31, 615-630.	0.1	12
27	Water in the Earth's Lower Mantle. Geochemistry International, 2018, 56, 1117-1134.	0.7	11
28	Physicochemical parameters of the material of mantle plumes: Evidence from the thermodynamic analysis of mineral inclusions in sublithospheric diamond. Geochemistry International, 2014, 52, 903-911.	0.7	9
29	lsotopic fractionation of oxygen and carbon in decomposed lower-mantle inclusions in diamond. Mineralogy and Petrology, 2016, 110, 379-385.	1.1	9
30	"Kamchatite―diamond aggregate from northern Kamchatka, Russia: New find of diamond formed by gas phase condensation or chemical vapor deposition. American Mineralogist, 2019, 104, 140-149.	1.9	9
31	Detrital pyrope garnets from the El Kseibat area, Algeria: A glimpse into the lithospheric mantle beneath the north-eastern edge of the West African Craton. Journal of African Earth Sciences, 2012, 63, 1-11.	2.0	8
32	DIAMONDS FROM THE COROMANDEL AREA, MINAS GERAIS, BRAZIL. Revista Brasileira De Geociências, 2001, 31, 583-596.	0.1	8
33	Carbonado revisited: Insights from neutron diffraction, high resolution orientation mapping and numerical simulations. Lithos, 2016, 265, 244-256.	1.4	6
34	The Fazenda Largo off-craton kimberlites of PiauÃ-State, Brazil. Journal of South American Earth Sciences, 2009, 28, 288-303.	1.4	4
35	Ellinaite, CaCr ₂ O ₄ , a new natural post-spinel oxide from Hatrurim Basin, Israel, and JuÃna kimberlite field, Brazil. European Journal of Mineralogy, 2021, 33, 727-742.	1.3	4
36	Basic problems concerning the composition of the Earth's lower mantle. Lithos, 2020, 364-365, 105515.	1.4	3

Felix V Kaminsky

#	Article	IF	CITATIONS
37	On "Kamchatite―diamond aggregate from northern Kamchatka, Russia: New find of CVD-formed diamond in nature—Reply to K.D. Litasov, T.B. Bekker, and H. Kagi. American Mineralogist, 2020, 105, 144-145.	1.9	2
38	Unusual green Type Ib–Iab Dniester–type diamond from Ukrainian placers. Mineralogy and Petrology, 2021, 115, 149-160.	1.1	2
39	Carbonatitic Lower-Mantle Mineral Association. Springer Geology, 2017, , 205-228.	0.3	1
40	Ultramafic Lower-Mantle Mineral Association. Springer Geology, 2017, , 47-160.	0.3	0
41	Seismic Heterogeneities and Their Nature in the Lower Mantle. Springer Geology, 2017, , 305-323.	0.3	0
42	D″ Layer: Transition from the Lower Mantle to the Earth's Core. Springer Geology, 2017, , 281-303.	0.3	0
43	General Physical and Chemical Models of the Earth's Lower Mantle. Springer Geology, 2017, , 5-22.	0.3	0