Günther Schönrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4955480/publications.pdf

Version: 2024-02-01

147726 143943 4,267 61 31 57 citations h-index g-index papers 61 61 61 5499 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Down-regulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell, 1991, 65, 293-304.	13.5	509
2	Autoimmune diabetes as a consequence of locally produced interleukin-2. Nature, 1992, 359, 547-549.	13.7	240
3	Multiple levels of peripheral tolerance. Trends in Immunology, 1993, 14, 12-14.	7.5	209
4	Neutrophil Extracellular Traps Go Viral. Frontiers in Immunology, 2016, 7, 366.	2.2	207
5	Targeting the Function of Mature Dendritic Cells by Human Cytomegalovirus. Immunity, 2001, 15, 997-1009.	6.6	203
6	The PD-1/PD-L1 Axis and Virus Infections: A Delicate Balance. Frontiers in Cellular and Infection Microbiology, 2019, 9, 207.	1.8	194
7	Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Advances in Biological Regulation, 2020, 77, 100741.	1.4	172
8	\hat{l}^22 integrin mediates hantavirus-induced release of neutrophil extracellular traps. Journal of Experimental Medicine, 2014, 211, 1485-1497.	4.2	159
9	Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9229-9234.	3.3	154
10	Hantavirusâ€induced immunity in rodent reservoirs and humans. Immunological Reviews, 2008, 225, 163-189.	2.8	145
11	SARS-CoV-2 in severe COVID-19 induces a TGF- \hat{l}^2 -dominated chronic immune response that does not target itself. Nature Communications, 2021, 12, 1961.	5.8	145
12	Human pathogenic hantaviruses and prevention of infection. Hum Vaccin, 2011, 7, 685-693.	2.4	144
13	Distinct mechanisms of extrathymic T cell tolerance due to differential expression of self antigen. International Immunology, 1992, 4, 581-590.	1.8	124
14	Shaping Phenotype, Function, and Survival of Dendritic Cells by Cytomegalovirus-Encoded IL-10. Journal of Immunology, 2004, 173, 3383-3391.	0.4	122
15	Hantavirus Infection of Dendritic Cells. Journal of Virology, 2002, 76, 10724-10733.	1.5	112
16	Herpes Simplex Virus Type 1 Infection of Activated Cytotoxic T Cells. Journal of Experimental Medicine, 1999, 190, 1103-1114.	4.2	104
17	Non-Deletional Mechanisms of Peripheral and Central Tolerance: Studies with Transgenic Mice with Tissue-Specific Expression of a Foreign MHC Class I Antigen. Immunological Reviews, 1991, 122, 47-67.	2.8	101
18	Differential Antiviral Response of Endothelial Cells after Infection with Pathogenic and Nonpathogenic Hantaviruses. Journal of Virology, 2004, 78, 6143-6150.	1.5	93

#	Article	IF	Citations
19	Anergy induced by thymic medullary epithelium. European Journal of Immunology, 1992, 22, 1687-1691.	1.6	92
20	Peripheral Tolerance as a Multi-Step Mechanism. Immunological Reviews, 1993, 133, 93-104.	2.8	92
21	A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs. Nature Communications, 2016, 7, 11320.	5.8	72
22	CD1 Antigen Presentation by Human Dendritic Cells as a Target for Herpes Simplex Virus Immune Evasion. Journal of Immunology, 2006, 177, 6207-6214.	0.4	57
23	Frontline: Induction of apoptosis and modulation of c-FLIPL and p53 in immature dendritic cells infected with herpes simplex virus. European Journal of Immunology, 2004, 34, 941-951.	1.6	47
24	Inhibition of CD1 Antigen Presentation by Human Cytomegalovirus. Journal of Virology, 2008, 82, 4308-4319.	1.5	44
25	Herpes Simplex Virus Type 1 (HSV-1)-Induced Apoptosis in Human Dendritic Cells as a Result of Downregulation of Cellular FLICE-Inhibitory Protein and Reduced Expression of HSV-1 Antiapoptotic Latency-Associated Transcript Sequences. Journal of Virology, 2010, 84, 1034-1046.	1.5	44
26	Paralysis of B7 co-stimulation through the effect of viral IL-10 on T cells as a mechanism of local tolerance induction. European Journal of Immunology, 1998, 28, 3488-3498.	1.6	43
27	Viral danger signals control CD1d <i>de novo</i> synthesis and NKT cell activation. European Journal of Immunology, 2008, 38, 668-679.	1.6	40
28	RNA helicase retinoic acid-inducible gene I as a sensor of Hantaan virus replication. Journal of General Virology, 2011, 92, 2191-2200.	1.3	38
29	Tolerance induction as a multi-step process. European Journal of Immunology, 1994, 24, 285-293.	1.6	36
30	Switch to high-level virus replication and HLA class I upregulation in differentiating megakaryocytic cells after infection with pathogenic hantavirus. Virology, 2010, 405, 70-80.	1.1	36
31	Expression of major histocompatibility complex class I antigens at low levels in the thymus induces T cell tolerance via a non-deletional mechanism. European Journal of Immunology, 1992, 22, 2655-2661.	1.6	34
32	Glycoprotein B from strain 17 of herpes simplex virus type I contains an invariant chain homologous sequence that binds to MHC class II molecules. Immunology, 2002, 107, 129-135.	2.0	31
33	Hantavirus-induced disruption of the endothelial barrier: neutrophils are on the payroll. Frontiers in Microbiology, 2015, 6, 222.	1.5	30
34	Virus-like particles derived from major capsid protein VP1 of different polyomaviruses differ in their ability to induce maturation in human dendritic cells. Virology, 2006, 354, 252-260.	1.1	27
35	Genetic reassortment between high-virulent and low-virulent Dobrava-Belgrade virus strains. Virus Genes, 2010, 41, 319-328.	0.7	26
36	RNAi-based small molecule repositioning reveals clinically approved urea-based kinase inhibitors as broadly active antivirals. PLoS Pathogens, 2019, 15, e1007601.	2.1	26

#	Article	lF	CITATIONS
37	Threshold tolerance in H-2Kb-specific TCR transgenic mice expressing mutant H-2Kb: conversion of helper-independent to helper-dependent CTL. International Immunology, 1992, 4, 1419-1428.	1.8	25
38	Association of TLR3-hyporesponsiveness and functional TLR3 L412F polymorphism with recurrent herpes labialis. Human Immunology, 2012, 73, 844-851.	1.2	25
39	Herpesviral capture of immunomodulatory host genes. Virus Genes, 2017, 53, 762-773.	0.7	22
40	Hantavirus-induced pathogenesis in mice with a humanized immune system. Journal of General Virology, 2015, 96, 1258-1263.	1.3	20
41	T cell activation and thymic tolerance induction require different adhesion intensities of the CD8 co-receptor. International Immunology, 1992, 4, 1169-1174.	1.8	19
42	Identification of an Important Immunological Difference between Virulent Varicella-Zoster Virus and Its Avirulent Vaccine: Viral Disruption of Dendritic Cell Instruction. Journal of Immunology, 2010, 185, 488-497.	0.4	18
43	Dendritic cells as Achilles $ ilde{A}$ ¢ \hat{a} , $\neg \hat{a}$,¢ heel and Trojan horse during varicella zoster virus infection. Frontiers in Microbiology, 2015, 6, 417.	1.5	18
44	Hantavirus-Driven PD-L1/PD-L2 Upregulation: An Imperfect Viral Immune Evasion Mechanism. Frontiers in Immunology, 2018, 9, 2560.	2,2	18
45	Cellular and Humoral Immunogenicity of Hamster Polyomavirus-Derived Virus-Like Particles Harboring a Mucin 1 Cytotoxic T-Cell Epitope. Viral Immunology, 2008, 21, 12-26.	0.6	16
46	NKT Cells Determine Titer and Subtype Profile of Virus-Specific IgG Antibodies during Herpes Simplex Virus Infection. Journal of Immunology, 2014, 192, 4294-4302.	0.4	16
47	HCMV-specific T-cell Therapy. Journal of Immunotherapy, 2013, 36, 93-101.	1.2	15
48	Development of a Human Cytomegalovirus (HCMV)-Based Therapeutic Cancer Vaccine Uncovers a Previously Unsuspected Viral Block of MHC Class I Antigen Presentation. Frontiers in Immunology, 2019, 10, 1776.	2.2	15
49	Replication in the Mononuclear Phagocyte System (MPS) as a Determinant of Hantavirus Pathogenicity. Frontiers in Cellular and Infection Microbiology, 2020, 10, 281.	1.8	14
50	Hantaviral mechanisms driving <scp>HLA</scp> class I antigen presentation require both <scp>RIG</scp> â€ <scp>I</scp> and <scp>TRIF</scp> . European Journal of Immunology, 2013, 43, 2566-2576.	1.6	13
51	Unravelling the interaction of human cytomegalovirus with dendritic cells by using SuperSAGE. Journal of General Virology, 2009, 90, 2221-2233.	1.3	12
52	Dendritic Cells (DCs) as "Fire Accelerants―of Hantaviral Pathogenesis. Viruses, 2019, 11, 849.	1.5	11
53	Exploring the Immunopathogenesis of Viral Hemorrhagic Fever in Mice with a Humanized Immune System. Frontiers in Immunology, 2017, 8, 1202.	2.2	9
54	T cell stimulation upon long-term secretion of viral IL-10. European Journal of Immunology, 1999, 29, 2740-2747.	1.6	8

#	Article	IF	CITATIONS
55	Dendritic cells cross-presenting viral antigens derived from autologous cells as a sensitive tool for visualization of human cytomegalovirus-reactive CD8+ T cells1. Transplantation, 2002, 73, 998-1002.	0.5	8
56	CD1-Restricted T Cells During Persistent Virus Infections: "Sympathy for the Devil― Frontiers in Immunology, 2018, 9, 545.	2.2	7
57	Peripheral T Cell Tolerance: Distinct Levels and Multistep Mechanisms. , 1994, , 135-148.		2
58	\hat{l}^22 integrin mediates hantavirus-induced release of neutrophil extracellular traps. Journal of Cell Biology, 2014, 205, 2055OIA105.	2.3	2
59	Herpesvirus Homologues of Cellular Genes. , 2000, , 65-75.		1
60	Megakaryocytes and Platelet Production During Viral Infection. , 2016, , 351-362.		1
61	Tolerance induction in mature peripheral T cells. , 1994, , 1-9.		0