Markus Krohn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4955155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MDR1â€Pâ€Glycoprotein (ABCB1) Mediates Transport of Alzheimer's Amyloidâ€Î² Peptides—Implications fo Mechanisms of Aβ Clearance at the Blood–Brain Barrier. Brain Pathology, 2007, 17, 347-353.	r the 4.1	216
2	The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nature Neuroscience, 2021, 24, 1522-1533.	14.8	164
3	Cerebral amyloid-β proteostasis is regulated by the membrane transport protein ABCC1 in mice. Journal of Clinical Investigation, 2011, 121, 3924-3931.	8.2	155
4	Reduced Alzheimer's Disease Pathology by St. John's Wort Treatment is Independent of Hyperforin and Facilitated by ABCC1 and Microglia Activation in Mice. Current Alzheimer Research, 2013, 10, 1057-1069.	1.4	82
5	Chronic Toxoplasma gondii infection enhances β-amyloid phagocytosis and clearance by recruited monocytes. Acta Neuropathologica Communications, 2016, 4, 25.	5.2	78
6	Alzheimer's disease and blood–brain barrier function—Why have anti-β-amyloid therapies failed to prevent dementia progression?. Neuroscience and Biobehavioral Reviews, 2009, 33, 1099-1108.	6.1	66
7	Alzheimer's and ABC transporters — new opportunities for diagnostics and treatment. Neurobiology of Disease, 2014, 72, 54-60.	4.4	66
8	Mitochondrial DNA polymorphisms specifically modify cerebral β-amyloid proteostasis. Acta Neuropathologica, 2012, 124, 199-208.	7.7	52
9	Clinico-Pathologic Function of Cerebral ABC Transporters – Implications for the Pathogenesis of Alzheimers Disease. Current Alzheimer Research, 2008, 5, 396-405.	1.4	49
10	Revisiting rodent models: Octodon degus as Alzheimer's disease model?. Acta Neuropathologica Communications, 2016, 4, 91.	5.2	46
11	ABC Transporters B1, C1 and G2 Differentially Regulate Neuroregeneration in Mice. PLoS ONE, 2012, 7, e35613.	2.5	46
12	Sideritis spp. Extracts Enhance Memory and Learning in Alzheimer's β-Amyloidosis Mouse Models and Aged C57Bl/6 Mice. Journal of Alzheimer's Disease, 2016, 53, 967-980.	2.6	44
13	Accumulation of murine amyloid-β mimics early Alzheimer's disease. Brain, 2015, 138, 2370-2382.	7.6	40
14	Vascular and extravascular distribution of the ATP-binding cassette transporters ABCB1 and ABCC1 in aged human brain and pituitary. Mechanisms of Ageing and Development, 2014, 141-142, 12-21.	4.6	37
15	ABCA7 Downregulation Modifies Cellular Cholesterol Homeostasis and Decreases Amyloid-β Peptide Efflux in an in vitro Model of the Blood-Brain Barrier. Journal of Alzheimer's Disease, 2018, 64, 1195-1211.	2.6	33
16	Determination of Spatial and Temporal Distribution of Microglia by 230nm-High-Resolution, High-Throughput Automated Analysis Reveals Different Amyloid Plaque Populations in an APP/PS1 Mouse Model of Alzheimers Disease. Current Alzheimer Research, 2011, 8, 781-788.	1.4	30
17	Automated Detection of Amyloid-β-Related Cortical and Subcortical Signal Changes in a Transgenic Model of Alzheimer's Disease using High-Field MRI. Journal of Alzheimer's Disease, 2011, 23, 221-237.	2.6	28
18	Cerebral ABC Transporter-common Mechanisms May Modulate Neurodegenerative Diseases and Depression in Elderly Subjects. Archives of Medical Research, 2014, 45, 738-743.	3.3	27

Markus Krohn

#	Article	IF	CITATIONS
19	Impaired mitochondrial energy production and ABC transporter function—A crucial interconnection in dementing proteopathies of the brain. Mechanisms of Ageing and Development, 2013, 134, 506-515.	4.6	26
20	Expression of endogenous mouse APP modulates β-amyloid deposition in hAPP-transgenic mice. Acta Neuropathologica Communications, 2017, 5, 49.	5.2	21
21	Imaging P-Glycoprotein Induction at the Blood–Brain Barrier of a β-Amyloidosis Mouse Model with ¹¹ C-Metoclopramide PET. Journal of Nuclear Medicine, 2020, 61, 1050-1057.	5.0	21
22	French maritime pine bark treatment decelerates plaque development and improves spatial memory in Alzheimer's disease mice. Phytomedicine, 2019, 57, 39-48.	5.3	20
23	Age dependency of cerebral P-glycoprotein function in wild-type and APPPS1 mice measured with PET. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 150-162.	4.3	20
24	Influence of Multidrug Resistance-Associated Proteins on the Excretion of the ABCC1 Imaging Probe 6-Bromo-7-[11C]Methylpurine in Mice. Molecular Imaging and Biology, 2019, 21, 306-316.	2.6	15
25	Genomic background-related activation of microglia and reduced β-amyloidosis in a mouse model of Alzheimer's disease. European Journal of Microbiology and Immunology, 2013, 3, 21-27.	2.8	14
26	Measurement of cerebral ABCC1 transport activity in wild-type and APP/PS1-21 mice with positron emission tomography. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 954-965.	4.3	14
27	Early Cognitive Training Rescues Remote Spatial Memory but Reduces Cognitive Flexibility in Alzheimer's Disease Mice. Journal of Alzheimer's Disease, 2020, 75, 1301-1317.	2.6	10
28	Activation of Mitochondrial Complex II-Dependent Respiration Is Beneficial for α-Synucleinopathies. Molecular Neurobiology, 2016, 53, 4728-4744.	4.0	9
29	Improved method for cannula fixation for long-term intracerebral brain infusion. Journal of Neuroscience Methods, 2017, 290, 145-150.	2.5	9
30	Generation and Characterization of an <i>Abcc1</i> Humanized Mouse Model (<i>hABCC1^{flx/flx}</i>) with Knockout Capability. Molecular Pharmacology, 2019, 96, 138-147.	2.3	4
31	Brain Distribution of Dual ABCB1/ABCG2 Substrates Is Unaltered in a Beta-Amyloidosis Mouse Model. International Journal of Molecular Sciences, 2020, 21, 8245.	4.1	4
32	Detection and Prediction of Mild Cognitive Impairment in Alzheimer's Disease Mice. Journal of Alzheimer's Disease, 2020, 77, 1209-1221.	2.6	4
33	The trophoblast clock controls transport across placenta in mice. Development (Cambridge), 2021, 148, .	2.5	4
34	Humanization of the blood–brain barrier transporter ABCB1 in mice disrupts genomic locus — lessons from three unsuccessful approaches. European Journal of Microbiology and Immunology, 2018, 8, 78-86.	2.8	2
35	Using a qPCR device to screen for modulators of ABC transporter activity: A step-by-step protocol. Journal of Pharmacological and Toxicological Methods, 2020, 104, 106882.	0.7	0