

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/495514/publications.pdf Version: 2024-02-01

LINC WEN

#	Article	IF	CITATIONS
1	BnaA02.YTG1, encoding a tetratricopeptide repeat protein, is required for early chloroplast biogenesis in Brassica napus. Crop Journal, 2022, 10, 597-610.	2.3	3
2	Brassica evolution of essential BnaFtsH1 genes involved in the PSII repair cycle and loss of FtsH5. Plant Science, 2022, 315, 111128.	1.7	4
3	Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed (Brassica napus L.). International Journal of Molecular Sciences, 2022, 23, 1279.	1.8	16
4	BnaA03.MKK5-BnaA06.MPK3/BnaC03.MPK3 Module Positively Contributes to Sclerotinia sclerotiorum Resistance in Brassica napus. Plants, 2022, 11, 609.	1.6	10
5	Combined BSA-Seq Based Mapping and RNA-Seq Profiling Reveal Candidate Genes Associated with Plant Architecture in Brassica napus. International Journal of Molecular Sciences, 2022, 23, 2472.	1.8	18
6	Construction of transgenic detection system of Brassica napus L. based on single nucleotide polymorphism chip. 3 Biotech, 2022, 12, 11.	1.1	0
7	Identification and Characterization of the MIKC-Type MADS-Box Gene Family in Brassica napus and Its Role in Floral Transition. International Journal of Molecular Sciences, 2022, 23, 4289.	1.8	9
8	Identification and Fine Mapping of the Candidate Gene Controlling Multi-Inflorescence in Brassica napus. International Journal of Molecular Sciences, 2022, 23, 7244.	1.8	5
9	Bn.YCO affects chloroplast development in Brassica napus L Crop Journal, 2021, 9, 992-992.	2.3	6
10	Fine Mapping and Identification of BnaC06.FtsH1, a Lethal Gene That Regulates the PSII Repair Cycle in Brassica napus. International Journal of Molecular Sciences, 2021, 22, 2087.	1.8	5
11	A mitochondria-localized pentatricopeptide repeat protein is required to restore hau cytoplasmic male sterility in Brassica napus. Theoretical and Applied Genetics, 2021, 134, 1377-1386.	1.8	11
12	Generation of novel selfâ€incompatible <i>Brassica napus</i> by CRISPR/Cas9. Plant Biotechnology Journal, 2021, 19, 875-877.	4.1	21
13	BnA1.CER4 and BnC1.CER4 are redundantly involved in branched primary alcohols in the cuticle wax of Brassica napus. Theoretical and Applied Genetics, 2021, 134, 3051-3067.	1.8	11
14	DELLA proteins BnaA6.RGA and BnaC7.RGA negatively regulate fatty acid biosynthesis by interacting with BnaLEC1s in <i>Brassica napus</i> . Plant Biotechnology Journal, 2021, 19, 2011-2026.	4.1	15
15	QTL Mapping and Diurnal Transcriptome Analysis Identify Candidate Genes Regulating Brassica napus Flowering Time. International Journal of Molecular Sciences, 2021, 22, 7559.	1.8	18
16	Increased seed number per silique in Brassica juncea by deleting cis â€regulatory region affecting BjCLV1 expression in carpel margin meristem. Plant Biotechnology Journal, 2021, 19, 2333-2348.	4.1	5
17	Genetic and Molecular Characterization of a Self-Compatible Brassica rapa Line Possessing a New Class II S Haplotype. Plants, 2021, 10, 2815.	1.6	5
18	Two young genes reshape a novel interaction network inBrassica napus. New Phytologist, 2020, 225, 530-545.	3.5	8

JING WEN

#	Article	IF	CITATIONS
19	Identification and fine mapping of a major locus controlling branching in Brassica napus. Theoretical and Applied Genetics, 2020, 133, 771-783.	1.8	23
20	Gene silencing of <i>BnaA09.ZEP</i> and <i>BnaC09.ZEP</i> confers orange color in <i>Brassica napus</i> flowers. Plant Journal, 2020, 104, 932-949.	2.8	41
21	Transcriptome profiling reveals cytokinin promoted callus regeneration in Brassica juncea. Plant Cell, Tissue and Organ Culture, 2020, 141, 191-206.	1.2	13
22	Disruption of carotene biosynthesis leads to abnormal plastids and variegated leaves in Brassica napus. Molecular Genetics and Genomics, 2020, 295, 981-999.	1.0	5
23	Differential expression of miRNAs and their targets in wax-deficient rapeseed. Scientific Reports, 2019, 9, 12201.	1.6	5
24	Construction of restorer lines and molecular mapping for restorer gene of hau cytoplasmic male sterility in Brassica napus. Theoretical and Applied Genetics, 2019, 132, 2525-2539.	1.8	6
25	Tapetal Expression of BnaC.MAGL8.a Causes Male Sterility in Arabidopsis. Frontiers in Plant Science, 2019, 10, 763.	1.7	6
26	Generation of Transgenic Self-Incompatible Arabidopsis thaliana Shows a Genus-Specific Preference for Self-Incompatibility Genes. Plants, 2019, 8, 570.	1.6	19
27	Cytological and iTRAQ-based quantitative proteomic analyses of hau CMS in Brassica napus L. Journal of Proteomics, 2019, 193, 230-238.	1.2	13
28	Identification of miRNAs that regulate silique development in Brassica napus. Plant Science, 2018, 269, 106-117.	1.7	27
29	Morphological, transcriptomics and biochemical characterization of new dwarf mutant of Brassica napus. Plant Science, 2018, 270, 97-113.	1.7	12
30	Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis. Autophagy, 2018, 14, 702-714.	4.3	27
31	Inheritance and gene mapping of the white flower trait in Brassica juncea. Molecular Breeding, 2018, 38, 1.	1.0	9
32	Transcript levels of orf288 are associated with the hau cytoplasmic male sterility system and altered nuclear gene expression in Brassica juncea. Journal of Experimental Botany, 2018, 69, 455-466.	2.4	35
33	Interactions of <i><scp>WRKY</scp>15</i> and <i><scp>WRKY</scp>33</i> transcription factors and their roles in the resistance of oilseed rape to <i>Sclerotinia</i> infection. Plant Biotechnology Journal, 2018, 16, 911-925.	4.1	53
34	Fine-mapping and candidate gene analysis of the Brassica juncea white-flowered mutant Bjpc2 using the whole-genome resequencing. Molecular Genetics and Genomics, 2018, 293, 359-370.	1.0	22
35	Association mapping of salt tolerance traits at germination stage of rapeseed (Brassica napus L.). Euphytica, 2018, 214, 1.	0.6	14
36	Genome-Wide DNA Methylation Comparison between Brassica napus Genic Male Sterile Line and Restorer Line. International Journal of Molecular Sciences, 2018, 19, 2689.	1.8	16

JING WEN

#	Article	IF	CITATIONS
37	Genome-Wide Association Study of Cadmium Accumulation at the Seedling Stage in Rapeseed (Brassica) Tj ETQq	l 1.0.7843 1.7	14 rgBT /C
38	CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh Biotechnology for Biofuels, 2018, 11, 124.	6.2	13
39	Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus. Plant Molecular Biology, 2017, 93, 579-592.	2.0	36
40	Identification of different cytoplasms based on newly developed mitotype-specific markers for marker-assisted selection breeding in Brassica napus L. Plant Cell Reports, 2017, 36, 901-909.	2.8	17
41	Trilocular phenotype in Brassica juncea L. resulted from interruption of CLAVATA1 gene homologue (BjMc1) transcription. Scientific Reports, 2017, 7, 3498.	1.6	35
42	Overexpression of the Novel Arabidopsis Gene At5g02890 Alters Inflorescence Stem Wax Composition and Affects Phytohormone Homeostasis. Frontiers in Plant Science, 2017, 8, 68.	1.7	13
43	Genome-Wide Association Study Reveals the Genetic Architecture Underlying Salt Tolerance-Related Traits in Rapeseed (Brassica napus L.). Frontiers in Plant Science, 2017, 8, 593.	1.7	89
44	Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (<i>Brassica napus L.</i>). DNA Research, 2016, 23, dsv035.	1.5	154
45	Genome-Wide Association Study Provides Insight into the Genetic Control of Plant Height in Rapeseed (Brassica napus L.). Frontiers in Plant Science, 2016, 7, 1102.	1.7	49
46	Ectopic Expression of <i>BnaC.CP20.1</i> Results in Premature Tapetal Programmed Cell Death in Arabidopsis. Plant and Cell Physiology, 2016, 57, 1972-1984.	1.5	22
47	Altered Transcription and Neofunctionalization of Duplicated Genes Rescue the Harmful Effects of a Chimeric Gene in <i>Brassica napus</i> . Plant Cell, 2016, 28, 2060-2078.	3.1	28
48	Heterodimer Formation of BnPKSA or BnPKSB with BnACOS5 Constitutes a Multienzyme Complex in Tapetal Cells and is Involved in Male Reproductive Development in <i>Brassica napus</i> . Plant and Cell Physiology, 2016, 57, 1643-1656.	1.5	25
49	Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L Molecular Genetics and Genomics, 2016, 291, 1523-1534.	1.0	34
50	Fine Mapping of Polycyetic Gene (<i>Bjmc2</i>) in <i>Brassica juncea</i> L. Acta Agronomica Sinica(China), 2016, 42, 1735.	0.1	7
51	Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress. International Journal of Molecular Sciences, 2015, 16, 18752-18777.	1.8	48
52	Tribenuron-Methyl Induces Male Sterility through Anther-Specific Inhibition of Acetolactate Synthase Leading to Autophagic Cell Death. Molecular Plant, 2015, 8, 1710-1724.	3.9	30
53	Neofunctionalization of Duplicated <i>Tic40</i> Genes Caused a Gain-of-Function Variation Related to Male Fertility in <i>Brassica oleracea</i> Lineages Â. Plant Physiology, 2014, 166, 1403-1419.	2.3	17
54	Identification of molecular markers linked to trilocular gene (mc1) in Brassica juncea L Molecular Breeding, 2014, 33, 425-434.	1.0	24

JING WEN

#	Article	IF	CITATIONS
55	Genetic characterisation and fine mapping of a chlorophyll-deficient mutant (BnaC.ygl) in Brassica napus. Molecular Breeding, 2014, 34, 603-614.	1.0	30
56	Comparative transcript profiling of the fertile and sterile flower buds of pol CMS in B. napus. BMC Genomics, 2014, 15, 258.	1.2	76
57	Comparative analysis of mitochondrial genomes between the hau cytoplasmic male sterility (CMS) line and its iso-nuclear maintainer line in Brassica juncea to reveal the origin of the CMS-associated gene orf288. BMC Genomics, 2014, 15, 322.	1.2	57
58	Interpreting the genetic basis of silique traits in <i><scp>B</scp>rassica napus</i> using a joint <scp>QTL</scp> network. Plant Breeding, 2014, 133, 52-60.	1.0	43
59	A novel dominant glossy mutation causes suppression of wax biosynthesis pathway and deficiency of cuticular wax in Brassica napus. BMC Plant Biology, 2013, 13, 215.	1.6	58
60	A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. Journal of Experimental Botany, 2012, 63, 1285-1295.	2.4	77
61	BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus. Journal of Experimental Botany, 2012, 63, 2041-2058.	2.4	56
62	Mapping of BnMs4 and BnRf to a common microsyntenic region of Arabidopsis thaliana chromosome 3 using intron polymorphism markers. Theoretical and Applied Genetics, 2012, 124, 1193-1200.	1.8	25
63	BnaC.Tic40, a plastid inner membrane translocon originating from <i>Brassica oleracea</i> , is essential for tapetal function and microspore development in <i>Brassica napus</i> . Plant Journal, 2011, 68, 532-545.	2.8	79
64	Identification, fine mapping and characterisation of a dwarf mutant (bnaC.dwf) in Brassica napus. Theoretical and Applied Genetics, 2011, 122, 421-428.	1.8	33
65	A separation defect of tapetum cells and microspore mother cells results in male sterility in Brassica napus: the role of abscisic acid in early anther development. Plant Molecular Biology, 2010, 72, 111-123.	2.0	46
66	Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant Journal, 2010, 63, 925-938.	2.8	129
67	Genetic characterization of a new cytoplasmic male sterility system (hau) in Brassica juncea and its transfer to B. napus. Theoretical and Applied Genetics, 2008, 116, 355-362.	1.8	61