## Witold Chrominski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4955091/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Precipitation phenomena in ultrafine grained Al–Mg–Si alloy with heterogeneous microstructure.<br>Acta Materialia, 2016, 103, 547-557.                                                                                                                                                     | 7.9  | 89        |
| 2  | Mechanical properties, structural and texture evolution of biocompatible Ti–45Nb alloy processed by severe plastic deformation. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 93-105.                                                                              | 3.1  | 66        |
| 3  | Grain refinement in technically pure aluminium plates using incremental ECAP processing. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015,<br>636, 172-180.                                                                     | 5.6  | 42        |
| 4  | Enhanced strength and electrical conductivity of ultrafine-grained Al-Mg-Si alloy processed by hydrostatic extrusion. Materials Characterization, 2018, 135, 104-114.                                                                                                                      | 4.4  | 42        |
| 5  | Mechanical properties and corrosion resistance of ultrafine grained austenitic stainless steel processed by hydrostatic extrusion. Materials and Design, 2017, 136, 34-44.                                                                                                                 | 7.0  | 35        |
| 6  | Precipitation strengthening of ultrafine-grained Al–Mg–Si alloy processed by hydrostatic extrusion.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2014, 609, 80-87.                                                            | 5.6  | 25        |
| 7  | Corrosion behavior of fine-grained Mg-7.5Li-3Al-1Zn fabricated by extrusion with a forward-backward rotating die (KoBo). Journal of Magnesium and Alloys, 2022, 10, 811-820.                                                                                                               | 11.9 | 21        |
| 8  | Strengthening mechanisms in ultrafine grained Al-Mg-Si alloy processed by hydrostatic extrusion –<br>Influence of ageing temperature. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2016, 669, 447-458.                           | 5.6  | 20        |
| 9  | Ultrafine-Grained Plates of Al-Mg-Si Alloy Obtained by Incremental Equal Channel Angular Pressing:<br>Microstructure and Mechanical Properties. Metallurgical and Materials Transactions A: Physical<br>Metallurgy and Materials Science, 2017, 48, 4871-4882.                             | 2.2  | 18        |
| 10 | Deuterium transport and retention in the bulk of tungsten containing helium: the effect of helium concentration and microstructure. Nuclear Fusion, 2020, 60, 106029.                                                                                                                      | 3.5  | 14        |
| 11 | Mechanisms of plastic deformation in ultrafine-grained aluminium – In-situ and ex-post studies.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2018, 715, 320-331.                                                              | 5.6  | 13        |
| 12 | TEM investigation of the influence of dose rate on radiation damage and deuterium retention in tungsten. Materials Characterization, 2019, 154, 1-6.                                                                                                                                       | 4.4  | 12        |
| 13 | Incremental ECAP as a Method to Produce Ultrafine Grained Aluminium Plates. Key Engineering<br>Materials, 2016, 710, 59-64.                                                                                                                                                                | 0.4  | 11        |
| 14 | The low temperature fracture behaviour of hydrostatically extruded ultra-fine grained Armco iron.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2015, 632, 35-42.                                                              | 5.6  | 8         |
| 15 | Influence of dislocation structures on precipitation phenomena in rolled Al–Mg–Si alloy. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020,<br>793, 139903.                                                                      | 5.6  | 8         |
| 16 | Microstructural changes and formability of Al–Mg ultrafine-grained aluminum plates processed by<br>multi-turn ECAP and upsetting. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2022, 831, 142202.                                | 5.6  | 8         |
| 17 | The importance of microstructural heterogeneities in the work hardening of ultrafine-grained<br>aluminum, studied by in-situ TEM straining and mechanical tests. Materials Science & Engineering<br>A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138200. | 5.6  | 7         |
| 18 | Microstructure, Texture and Mechanical Properties of Mg-6Sn Alloy Processed by Differential Speed<br>Rolling. Materials, 2021, 14, 83.                                                                                                                                                     | 2.9  | 7         |

WITOLD CHROMINSKI

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Precipitation strengthening of Al-Mg-Si alloy subjected to multiple accumulative roll bonding combined with a heat treatment. Materials and Design, 2022, 219, 110813.                                                                                   | 7.0 | 7         |
| 20 | Microstructural response to compression deformation of ultrafine-grained aluminum with various<br>microstructures. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2019, 763, 138184.             | 5.6 | 6         |
| 21 | Enhancing the Electrical Conductivity of Electrolytic Tough Pitch Copper Rods Processed by<br>Incremental Equal Channel Angular Pressing. Metallurgical and Materials Transactions A: Physical<br>Metallurgy and Materials Science, 2020, 51, 3749-3753. | 2.2 | 6         |
| 22 | A Comparison of Warm and Combined Warm and Lowâ€Temperature Processing Routes for the<br>Equalâ€Channel Angular Pressing of Pure Titanium. Advanced Engineering Materials, 2020, 22, 1900698.                                                            | 3.5 | 5         |
| 23 | Dislocation Substructure Evolution during Hydrostatic Extrusion of Al-Mg-Si Alloy. Acta Physica<br>Polonica A, 2015, 128, 585-588.                                                                                                                       | 0.5 | 5         |
| 24 | The Effect of Extrusion Ratio on the Corrosion Resistance of Ultrafine-Grained Mg-4Li-3Al-Zn Alloy<br>Deformed Using Extrusion with a Forward-Backward Oscillating Die. Journal of Materials Engineering<br>and Performance, 2022, 31, 8932-8939.        | 2.5 | 5         |
| 25 | Effect of Fiber Orientation on Microstructure and Texture Evolution During the Coldâ€Rolling of<br>Al–Mg–Si Alloy. Advanced Engineering Materials, 2022, 24, .                                                                                           | 3.5 | 4         |
| 26 | Tailoring Microstructure and Mechanical Properties of 6063 Aluminium Alloy for Lightweight<br>Structural Parts. Materials Science Forum, 0, 765, 388-392.                                                                                                | 0.3 | 3         |
| 27 | Forming Ability of Ultrafineâ€Grained Aluminum Plates Processed by Incremental Equal Channel Angular<br>Pressing. Advanced Engineering Materials, 2019, 21, 1900473.                                                                                     | 3.5 | 3         |
| 28 | Incremental Severe Plastic Deformation Effect on Mechanical and Microstructural Characteristics of AA6063. Transactions of the Indian Institute of Metals, 2021, 74, 69-77.                                                                              | 1.5 | 3         |
| 29 | Phenomena Occurring in Nanostructured Stainless Steel 316LVM during Annealing under High<br>Hydrostatic Pressure. Advanced Engineering Materials, 2019, 21, 1800101.                                                                                     | 3.5 | 2         |
| 30 | Comparison of Microstructure, Texture, and Mechanical Properties of TZ61 and AZ61 Mg Alloys Processed by Differential Speed Rolling. Materials, 2022, 15, 785.                                                                                           | 2.9 | 2         |
| 31 | Accumulation and mechanism of the fatigue damage for a nickel based superalloy. Materials Today:<br>Proceedings, 2017, 4, 5946-5950.                                                                                                                     | 1.8 | 0         |