Huijie Qiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4955009/publications.pdf

Version: 2024-02-01

430874 330143 1,592 38 18 37 h-index citations g-index papers 40 40 40 2445 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Accounting for dispersal using simulated data improves understanding of species abundance patterns. Global Ecology and Biogeography, 2022, 31, 200-214.	5.8	4
2	Phylogenetic relatedness, functional traits, and spatial scale determine herbivore coâ€occurrence in a subtropical forest. Ecological Monographs, 2022, 92, e01492.	5.4	8
3	Prospects and challenges coexist in China's new protected area system. Biodiversity and Conservation, 2022, 31, 315-319.	2.6	3
4	Past climate cooling promoted global dispersal of amphipods from Tian Shan montane lakes to circumboreal lakes. Global Change Biology, 2022, 28, 3830-3845.	9.5	10
5	Ecological Niche Shifts Affect the Potential Invasive Risk of Rapistrum rugosum (L.) All. in China. Frontiers in Plant Science, 2022, 13, 827497.	3.6	1
6	Effectively and accurately mapping global biodiversity patterns for different regions and taxa. Global Ecology and Biogeography, 2021, 30, 1375-1388.	5.8	32
7	A multi-faceted comparative perspective on elevational beta-diversity: the patterns and their causes. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210343.	2.6	21
8	Network connectivity of Minnesota waterbodies and implications for aquatic invasive species prevention. Biological Invasions, 2021, 23, 3231-3242.	2.4	11
9	Sampling biases shape our view of the natural world. Ecography, 2021, 44, 1259-1269.	4.5	190
10	Extinction Targets Are Not SMART (Specific, Measurable, Ambitious, Realistic, and Time Bound). BioScience, 2021, 71, 115-118.	4.9	12
11	Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nature Geoscience, 2020, 13, 65-70.	12.9	39
12	Matters needing attention about invoking ecological niche model in epidemiology. Biodiversity Science, 2020, 28, 579-586.	0.6	1
13	Doubling demands in programming skills call for ecoinformatics education. Frontiers in Ecology and the Environment, 2020, 18, 123-124.	4.0	13
14	An evaluation of transferability of ecological niche models. Ecography, 2019, 42, 521-534.	4.5	97
15	The NIH public access policy did not harm biomedical journals. PLoS Biology, 2019, 17, e3000352.	5.6	4
16	Spatio-temporal climate change contributes to latitudinal diversity gradients. Nature Ecology and Evolution, 2019, 3, 1419-1429.	7.8	67
17	Nonâ€random latitudinal gradients in range size and niche breadth predicted by spatial patterns of climate. Global Ecology and Biogeography, 2019, 28, 928-942.	5.8	34
18	Ecological niche modeling reâ€examined: A case study with the Darwin's fox. Ecology and Evolution, 2018, 8, 4757-4770.	1.9	50

#	Article	IF	CITATIONS
19	Summary results of the 2014-2015 DARPA Chikungunya challenge. BMC Infectious Diseases, 2018, 18, 245.	2.9	43
20	Vegetation responses to the warming at the Younger Dryas-Holocene transition in the Hengduan Mountains, southwestern China. Quaternary Science Reviews, 2018, 192, 236-248.	3.0	20
21	Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modelling. Methods in Ecology and Evolution, 2017, 8, 1804-1812.	5.2	40
22	Using the KDE method to model ecological niches: A response to Blonder et al. (2017). Global Ecology and Biogeography, 2017, 26, 1076-1077.	5.8	6
23	Accessible areas in ecological niche comparisons of invasive species: Recognized but still overlooked. Scientific Reports, 2017, 7, 1213.	3.3	50
24	A cautionary note on the use of hypervolume kernel density estimators in ecological niche modelling. Global Ecology and Biogeography, 2017, 26, 1066-1070.	5.8	27
25	Novel Methods in Disease Biogeography: A Case Study with Heterosporosis. Frontiers in Veterinary Science, 2017, 4, 105.	2.2	5
26	NicheA: creating virtual species and ecological niches in multivariate environmental scenarios. Ecography, 2016, 39, 805-813.	4.5	145
27	Impacts of Niche Breadth and Dispersal Ability on Macroevolutionary Patterns. American Naturalist, 2016, 188, 149-162.	2.1	39
28	Realized niche shift associated with the Eurasian charophyte Nitellopsis obtusa becoming invasive in North America. Scientific Reports, 2016, 6, 29037.	3.3	29
29	Formal nomenclature and description of cryptic species of the Encyrtus sasakii complex (Hymenoptera: Encyrtidae). Scientific Reports, 2016, 6, 34372.	3.3	13
30	Forecasting Chikungunya spread in the Americas via data-driven empirical approaches. Parasites and Vectors, $2016, 9, 112$.	2.5	16
31	Zika Virus, Elevation, and Transmission Risk. PLOS Currents, 2016, 8, .	1.4	14
32	Niche divergence accelerates evolution in Asian endemic Procapra gazelles. Scientific Reports, 2015, 5, 10069.	3.3	20
33	Marble Algorithm: a solution to estimating ecological niches from presence-only records. Scientific Reports, 2015, 5, 14232.	3.3	16
34	Ecological approaches in veterinary epidemiology: mapping the risk of bat-borne rabies using vegetation indices and night-time light satellite imagery. Veterinary Research, 2015, 46, 92.	3.0	20
35	Niche breadth and geographic range size as determinants of species survival on geological time scales. Global Ecology and Biogeography, 2015, 24, 1159-1169.	5.8	96
36	A global map of suitability for coastal Vibrio cholerae under current and future climate conditions. Acta Tropica, 2015, 149, 202-211.	2.0	87

Huijie Qiao

#	Article	IF	CITATIONS
37	No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods in Ecology and Evolution, 2015, 6, 1126-1136.	5.2	303
38	mMWeb - An Online Platform for Employing Multiple Ecological Niche Modeling Algorithms. PLoS ONE, 2012, 7, e43327.	2.5	6