Huijie Qiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4955009/publications.pdf

Version: 2024-02-01

		430754	3	330025
38	1,592	18		37
papers	citations	h-index		g-index
40	40	40		2445
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods in Ecology and Evolution, 2015, 6, 1126-1136.	2.2	303
2	Sampling biases shape our view of the natural world. Ecography, 2021, 44, 1259-1269.	2.1	190
3	NicheA: creating virtual species and ecological niches in multivariate environmental scenarios. Ecography, 2016, 39, 805-813.	2.1	145
4	An evaluation of transferability of ecological niche models. Ecography, 2019, 42, 521-534.	2.1	97
5	Niche breadth and geographic range size as determinants of species survival on geological time scales. Global Ecology and Biogeography, 2015, 24, 1159-1169.	2.7	96
6	A global map of suitability for coastal Vibrio cholerae under current and future climate conditions. Acta Tropica, 2015, 149, 202-211.	0.9	87
7	Spatio-temporal climate change contributes to latitudinal diversity gradients. Nature Ecology and Evolution, 2019, 3, 1419-1429.	3.4	67
8	Accessible areas in ecological niche comparisons of invasive species: Recognized but still overlooked. Scientific Reports, 2017, 7, 1213.	1.6	50
9	Ecological niche modeling reâ€examined: A case study with the Darwin's fox. Ecology and Evolution, 2018, 8, 4757-4770.	0.8	50
10	Summary results of the 2014-2015 DARPA Chikungunya challenge. BMC Infectious Diseases, 2018, 18, 245.	1.3	43
11	Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modelling. Methods in Ecology and Evolution, 2017, 8, 1804-1812.	2.2	40
12	Impacts of Niche Breadth and Dispersal Ability on Macroevolutionary Patterns. American Naturalist, 2016, 188, 149-162.	1.0	39
13	Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nature Geoscience, 2020, 13, 65-70.	5 . 4	39
14	Nonâ€random latitudinal gradients in range size and niche breadth predicted by spatial patterns of climate. Global Ecology and Biogeography, 2019, 28, 928-942.	2.7	34
15	Effectively and accurately mapping global biodiversity patterns for different regions and taxa. Global Ecology and Biogeography, 2021, 30, 1375-1388.	2.7	32
16	Realized niche shift associated with the Eurasian charophyte Nitellopsis obtusa becoming invasive in North America. Scientific Reports, 2016, 6, 29037.	1.6	29
17	A cautionary note on the use of hypervolume kernel density estimators in ecological niche modelling. Global Ecology and Biogeography, 2017, 26, 1066-1070.	2.7	27
18	A multi-faceted comparative perspective on elevational beta-diversity: the patterns and their causes. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210343.	1.2	21

#	Article	IF	CITATIONS
19	Niche divergence accelerates evolution in Asian endemic Procapra gazelles. Scientific Reports, 2015, 5, 10069.	1.6	20
20	Ecological approaches in veterinary epidemiology: mapping the risk of bat-borne rabies using vegetation indices and night-time light satellite imagery. Veterinary Research, 2015, 46, 92.	1.1	20
21	Vegetation responses to the warming at the Younger Dryas-Holocene transition in the Hengduan Mountains, southwestern China. Quaternary Science Reviews, 2018, 192, 236-248.	1.4	20
22	Marble Algorithm: a solution to estimating ecological niches from presence-only records. Scientific Reports, 2015, 5, 14232.	1.6	16
23	Forecasting Chikungunya spread in the Americas via data-driven empirical approaches. Parasites and Vectors, 2016, 9, 112.	1.0	16
24	Zika Virus, Elevation, and Transmission Risk. PLOS Currents, 2016, 8, .	1.4	14
25	Formal nomenclature and description of cryptic species of the Encyrtus sasakii complex (Hymenoptera: Encyrtidae). Scientific Reports, 2016, 6, 34372.	1.6	13
26	Doubling demands in programming skills call for ecoinformatics education. Frontiers in Ecology and the Environment, 2020, 18, 123-124.	1.9	13
27	Extinction Targets Are Not SMART (Specific, Measurable, Ambitious, Realistic, and Time Bound). BioScience, 2021, 71, 115-118.	2.2	12
28	Network connectivity of Minnesota waterbodies and implications for aquatic invasive species prevention. Biological Invasions, 2021, 23, 3231-3242.	1.2	11
29	Past climate cooling promoted global dispersal of amphipods from Tian Shan montane lakes to circumboreal lakes. Global Change Biology, 2022, 28, 3830-3845.	4.2	10
30	Phylogenetic relatedness, functional traits, and spatial scale determine herbivore coâ€occurrence in a subtropical forest. Ecological Monographs, 2022, 92, e01492.	2.4	8
31	mMWeb - An Online Platform for Employing Multiple Ecological Niche Modeling Algorithms. PLoS ONE, 2012, 7, e43327.	1.1	6
32	Using the KDE method to model ecological niches: A response to Blonder et al. (2017). Global Ecology and Biogeography, 2017, 26, 1076-1077.	2.7	6
33	Novel Methods in Disease Biogeography: A Case Study with Heterosporosis. Frontiers in Veterinary Science, 2017, 4, 105.	0.9	5
34	The NIH public access policy did not harm biomedical journals. PLoS Biology, 2019, 17, e3000352.	2.6	4
35	Accounting for dispersal using simulated data improves understanding of species abundance patterns. Global Ecology and Biogeography, 2022, 31, 200-214.	2.7	4
36	Prospects and challenges coexist in China's new protected area system. Biodiversity and Conservation, 2022, 31, 315-319.	1.2	3

Huijie Qiao

#	Article	IF	CITATIONS
37	Matters needing attention about invoking ecological niche model in epidemiology. Biodiversity Science, 2020, 28, 579-586.	0.2	1
38	Ecological Niche Shifts Affect the Potential Invasive Risk of Rapistrum rugosum (L.) All. in China. Frontiers in Plant Science, 2022, 13, 827497.	1.7	1