
Craig A Poland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4954761/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioaccessibility as a determining factor in the bioavailability and toxicokinetics of cadmium compounds. Toxicology, 2021, 463, 152969.	2.0	7
2	Precaution as a Risk in Data Gaps and Sustainable Nanotechnology Decision Support Systems: a Case Study of Nano-Enabled Textiles Production. NanoEthics, 2021, 15, 245-270.	0.5	0
3	Length-dependent toxicity of TiO ₂ nanofibers: mitigation via shortening. Nanotoxicology, 2020, 14, 433-452.	1.6	11
4	Nanotoxicology: The Need for a Human Touch?. Small, 2020, 16, e2001516.	5.2	19
5	Nanotoxicology data for <i>in silico</i> tools: a literature review. Nanotoxicology, 2020, 14, 612-637.	1.6	51
6	Practices and Trends of Machine Learning Application in Nanotoxicology. Nanomaterials, 2020, 10, 116.	1.9	73
7	Assessment of the physicochemical properties of chrysotile-containing brake debris pertaining to toxicity. Inhalation Toxicology, 2019, 31, 325-342.	0.8	6
8	Application of Bayesian networks in determining nanoparticle-induced cellular outcomes using transcriptomics. Nanotoxicology, 2019, 13, 827-848.	1.6	28
9	Machine learning prediction of nanoparticle in vitro toxicity: A comparative study of classifiers and ensemble-classifiers using the Copeland Index. Toxicology Letters, 2019, 312, 157-166.	0.4	48
10	The toxicology of chrysotile-containing brake debris: implications for mesothelioma. Critical Reviews in Toxicology, 2019, 49, 11-35.	1.9	9
11	Silica modification of titania nanoparticles enhances photocatalytic production of reactive oxygen species without increasing toxicity potential <i>in vitro</i> . RSC Advances, 2018, 8, 40369-40377.	1.7	12
12	Respiratory System, Part One: Basic Mechanisms. , 2017, , 225-242.		1
13	Long-Fiber Carbon Nanotubes Replicate Asbestos-Induced Mesothelioma with Disruption of the Tumor Suppressor Gene Cdkn2a (Ink4a/Arf). Current Biology, 2017, 27, 3302-3314.e6.	1.8	96
14	Targeting lysyl oxidase reduces peritoneal fibrosis. PLoS ONE, 2017, 12, e0183013.	1.1	30
15	A comparison of control banding tools for nanomaterials. Journal of Occupational and Environmental Hygiene, 2016, 13, 936-949.	0.4	24
16	Silica matrix encapsulation as a strategy to control ROS production while preserving photoreactivity in nano-TiO ₂ . Environmental Science: Nano, 2016, 3, 602-610.	2.2	23
17	Shape-Related Toxicity of Titanium Dioxide Nanofibres. PLoS ONE, 2016, 11, e0151365.	1.1	47
18	Impact and effectiveness of risk mitigation strategies on the insurability of nanomaterial production: evidences from industrial case studies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 839-855.	3.3	23

CRAIG A POLAND

#	Article	IF	CITATIONS
19	Dosimetry and Toxicology of Nanosized Particles and Fibres. Handbook of Environmental Chemistry, 2015, , 1-18.	0.2	2
20	The role of biological monitoring in nano-safety. Nano Today, 2015, 10, 274-277.	6.2	34
21	Response-metrics for acute lung inflammation pattern by cobalt-based nanoparticles. Particle and Fibre Toxicology, 2015, 12, 13.	2.8	22
22	ITS-NANO - Prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Particle and Fibre Toxicology, 2014, 11, 9.	2.8	124
23	The elephant in the room: reproducibility in toxicology. Particle and Fibre Toxicology, 2014, 11, 42.	2.8	16
24	Length-dependent pleural inflammation and parietal pleural responses after deposition of carbon nanotubes in the pulmonary airspaces of mice. Nanotoxicology, 2013, 7, 1157-1167.	1.6	82
25	Pulmonary toxicity of carbon nanotubes and asbestos — Similarities and differences. Advanced Drug Delivery Reviews, 2013, 65, 2078-2086.	6.6	262
26	The Biologically Effective Dose in Inhalation Nanotoxicology. Accounts of Chemical Research, 2013, 46, 723-732.	7.6	135
27	Nanoparticles and the cardiovascular system: a critical review. Nanomedicine, 2013, 8, 403-423.	1.7	91
28	Nanotoxicity: challenging the myth of nano-specific toxicity. Current Opinion in Biotechnology, 2013, 24, 724-734.	3.3	191
29	Differential effects of long and short carbon nanotubes on the gas-exchange region of the mouse lung. Nanotoxicology, 2012, 6, 867-879.	1.6	24
30	Zeta Potential and Solubility to Toxic Ions as Mechanisms of Lung Inflammation Caused by Metal/Metal Oxide Nanoparticles. Toxicological Sciences, 2012, 126, 469-477.	1.4	251
31	Carbon nanotube–cellular interactions: macrophages, epithelial and mesothelial cells. , 2012, , 174-209.		0
32	The Threshold Length for Fiber-Induced Acute Pleural Inflammation: Shedding Light on the Early Events in Asbestos-Induced Mesothelioma. Toxicological Sciences, 2012, 128, 461-470.	1.4	161
33	Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions <i>in vitro</i> and <i>in vivo</i> ; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology, 2012, 6, 22-35.	1.6	202
34	Length-dependent pathogenic effects of nickel nanowires in the lungs and the peritoneal cavity. Nanotoxicology, 2012, 6, 899-911.	1.6	66
35	The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Particle and Fibre Toxicology, 2012, 9, 8.	2.8	197
36	Inhaled nanoparticles and lung cancer - what we can learn from conventional particle toxicology. Swiss Medical Weekly, 2012, 142, w13547.	0.8	63

CRAIG A POLAND

3

#	Article	IF	CITATIONS
37	Length-Dependent Retention of Carbon Nanotubes in the Pleural Space of Mice Initiates Sustained Inflammation and Progressive Fibrosis on the Parietal Pleura. American Journal of Pathology, 2011, 178, 2587-2600.	1.9	278
38	Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design. Nanomedicine, 2011, 6, 143-156.	1.7	163
39	Cytotoxicity and Induction of Inflammation by Pepsin in Acid in Bronchial Epithelial Cells. International Journal of Inflammation, 2011, 2011, 1-5.	0.9	24
40	Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres. Particle and Fibre Toxicology, 2011, 8, 15.	2.8	87
41	Asbestos, carbon nanotubes and the pleural mesothelium: a review and the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Particle and Fibre Toxicology, 2010, 7, 5.	2.8	735
42	Metal Oxide Nanoparticles Induce Unique Inflammatory Footprints in the Lung: Important Implications for Nanoparticle Testing. Environmental Health Perspectives, 2010, 118, 1699-1706.	2.8	273
43	Possible genotoxic mechanisms of nanoparticles: Criteria for improved test strategies. Nanotoxicology, 2010, 4, 414-420.	1.6	149
44	Efficacy of Simple Short-Term <i>in Vitro</i> Assays for Predicting the Potential of Metal Oxide Nanoparticles to Cause Pulmonary Inflammation. Environmental Health Perspectives, 2009, 117, 241-247.	2.8	234
45	New insights into nanotubes. Nature Nanotechnology, 2009, 4, 708-710.	15.6	100
46	Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 2008, 3, 423-428.	15.6	2,349
47	Letter to the Editor. Journal of Toxicological Sciences, 2008, 33, 385-385.	0.7	32
48	High Aspect Ratio Nanoparticles and the Fibre Pathogenicity Paradigm. , 0, , 61-79.		6
49	Experimental carcinogenicity of carbon nanotubes in the context of other fibres. , 0, , 105-117.		0
50	Genotoxicity of carbon nanotubes. , 0, , 150-173.		4
51	CNT biopersistence and the fibre paradigm. , 0, , 73-86.		2

52 Fate and effects of carbon nanotubes following inhalation. , 0, , 118-133.