Liyuan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4954707/publications.pdf

Version: 2024-02-01

758635 794141 20 726 12 19 h-index citations g-index papers 20 20 20 815 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Improving efficiency of training a virtual treatment planner network via knowledgeâ€guided deep reinforcement learning for intelligent automatic treatment planning of radiotherapy. Medical Physics, 2021, 48, 1909-1920.	1.6	14
2	Synthetic CT generation from CBCT images via unsupervised deep learning. Physics in Medicine and Biology, 2021, 66, 115019.	1.6	26
3	A hierarchical deep reinforcement learning framework for intelligent automatic treatment planning of prostate cancer intensity modulated radiation therapy. Physics in Medicine and Biology, 2021, 66, 134002.	1.6	13
4	Attention Guided Lymph Node Malignancy Prediction in Head and Neck Cancer. International Journal of Radiation Oncology Biology Physics, 2021, 110, 1171-1179.	0.4	10
5	Synthetic CT generation from CBCT images via deep learning. Medical Physics, 2020, 47, 1115-1125.	1.6	109
6	A manifold learning regularization approach to enhance 3D CT image-based lung nodule classification. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 287-295.	1.7	45
7	A multiâ€objective radiomics model for the prediction of locoregional recurrence in head and neck squamous cell cancer. Medical Physics, 2020, 47, 5392-5400.	1.6	20
8	Operating a treatment planning system using a deepâ€reinforcement learningâ€based virtual treatment planner for prostate cancer intensityâ€modulated radiation therapy treatment planning. Medical Physics, 2020, 47, 2329-2336.	1.6	52
9	Uâ€netâ€based deformation vector field estimation for motionâ€compensated 4Dâ€CBCT reconstruction. Medical Physics, 2020, 47, 3000-3012.	1.6	15
10	Predicting lymph node metastasis in patients with oropharyngeal cancer by using a convolutional neural network with associated epistemic and aleatoric uncertainty. Physics in Medicine and Biology, 2020, 65, 225002.	1.6	12
11	Comparison of three undersampling approaches in computed tomography reconstruction. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1229-1241.	1.1	3
12	Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Physics in Medicine and Biology, 2019, 64, 125002.	1.6	170
13	Automatic PET cervical tumor segmentation by combining deep learning and anatomic prior. Physics in Medicine and Biology, 2019, 64, 085019.	1.6	37
14	Intelligent inverse treatment planning via deep reinforcement learning, a proof-of-principle study in high dose-rate brachytherapy for cervical cancer. Physics in Medicine and Biology, 2019, 64, 115013.	1.6	70
15	Technical Note: Deriving ventilation imaging from 4DCTby deep convolutional neural network. Medical Physics, 2019, 46, 2323-2329.	1.6	23
16	Variational Image Restoration and Segmentation with Rician Noise. Journal of Scientific Computing, 2019, 78, 1329-1352.	1.1	8
17	Quality-guided deep reinforcement learning for parameter tuning in iterative CT reconstruction. , 2019, , .		4
18	Material elemental decomposition in dual and multiâ€energy CT via a sparsityâ€dictionary approach for proton stopping power ratio calculation. Medical Physics, 2018, 45, 1491-1503.	1.6	15

LIYUAN CHEN

#	Article	IF	CITATION
19	Intelligent Parameter Tuning in Optimization-Based Iterative CT Reconstruction via Deep Reinforcement Learning. IEEE Transactions on Medical Imaging, 2018, 37, 1430-1439.	5.4	73
20	Accurate segmenting of cervical tumors in PET imaging based on similarity between adjacent slices. Computers in Biology and Medicine, 2018, 97, 30-36.	3.9	7