List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4954344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for <i>Fungi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6241-6246.	3.3	4,012
2	The Ascomycota Tree of Life: A Phylum-wide Phylogeny Clarifies the Origin and Evolution of Fundamental Reproductive and Ecological Traits. Systematic Biology, 2009, 58, 224-239.	2.7	581
3	Families of Dothideomycetes. Fungal Diversity, 2013, 63, 1-313.	4.7	509
4	Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes. Mycopathologia, 2017, 182, 5-31.	1.3	447
5	One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2015, 35, 242-263.	1.6	416
6	Fusarium: Molecular Diversity and Intrinsic Drug Resistance. PLoS Pathogens, 2016, 12, e1005464.	2.1	314
7	Redefinition of Aureobasidium pullulans and its varieties. Studies in Mycology, 2008, 61, 21-38.	4.5	275
8	ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. Clinical Microbiology and Infection, 2014, 20, 47-75.	2.8	262
9	Fungi growing on aromatic hydrocarbons: biotechnology's unexpected encounter with biohazard?. FEMS Microbiology Reviews, 2006, 30, 109-130.	3.9	247
10	Chromoblastomycosis. Clinical Microbiology Reviews, 2017, 30, 233-276.	5.7	234
11	Spectrum of Clinically Relevant Exophiala Species in the United States. Journal of Clinical Microbiology, 2007, 45, 3713-3720.	1.8	214
12	Dishwashers – A man-made ecological niche accommodating human opportunistic fungal pathogens. Fungal Biology, 2011, 115, 997-1007.	1.1	196
13	Waterborne <i>Exophiala</i> species causing disease in cold-blooded animals. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2011, 27, 46-72.	1.6	191
14	Fungal Planet description sheets: 154–213. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2013, 31, 188-296.	1.6	179
15	A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Studies in Mycology, 2008, 61, 111-119.	4.5	178
16	Phylogeography and evolutionary patterns in <l>Sporothrix</l> spanning more than 14 000 human and animal case reports. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2015, 35, 1-20.	1.6	176
17	Biodiversity of the genus Cladophialophora. Studies in Mycology, 2008, 61, 175-191.	4.5	172
18	<i>Aspergillus</i> and aspergilloses in wild and domestic animals: a global health concern with parallels to human disease. Medical Mycology, 2015, 53, 765-797.	0.3	172

#	Article	IF	CITATIONS
19	Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Studies in Mycology, 2008, 61, 1-20.	4.5	167
20	Global guideline for the diagnosis and management of rare mould infections: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiology. Lancet Infectious Diseases, The, 2021, 21, e246-e257.	4.6	167
21	Opportunistic, human-pathogenic species in the Herpotrichiellaceae are phenotypically similar to saprobic or phytopathogenic species in the Venturiaceae. Studies in Mycology, 2007, 58, 185-217.	4.5	161
22	Molecular Taxonomy of the Trichophyton rubrum Complex. Journal of Clinical Microbiology, 2000, 38, 3329-3336.	1.8	152
23	Molecular taxonomy of Trichophyton mentagrophytes and T. tonsurans. Medical Mycology, 1999, 37, 315-330.	0.3	145
24	Exploring the genomic diversity of black yeasts and relatives (<i>Chaetothyriales</i> , <i>Ascomycota</i>). Studies in Mycology, 2017, 86, 1-28.	4.5	144
25	High prevalence of the neurotropeExophiala dermatitidisand related oligotrophic black yeasts in sauna facilities. Mycoses, 2002, 45, 373-377.	1.8	143
26	Species Diversity and Polymorphism in the Exophiala spinifera Clade Containing Opportunistic Black Yeast-Like Fungi. Journal of Clinical Microbiology, 2003, 41, 4767-4778.	1.8	141
27	Environmental isolation of black yeast-like fungi involved in human infection. Studies in Mycology, 2008, 61, 137-144.	4.5	136
28	The neurotropic black yeast Exophiala dermatitidis has a possible origin in the tropical rain forest. Studies in Mycology, 2008, 61, 145-155.	4.5	136
29	Cerebral phaeohyphomycosis—a cure at what lengths?. Lancet Infectious Diseases, The, 2009, 9, 376-383.	4.6	129
30	Molecular ecology and pathogenic potential ofFonsecaeaspecies. Medical Mycology, 2004, 42, 405-416.	0.3	126
31	Isolation and Screening of Black Fungi as Degraders of Volatile Aromatic Hydrocarbons. Mycopathologia, 2013, 175, 369-379.	1.3	118
32	Molecular analysis and pathogenicity of the Cladophialophora carrionii complex, with the description of a novel species. Studies in Mycology, 2007, 58, 219-234.	4.5	114
33	Extremotolerant rock inhabiting black fungi from Italian monumental sites. Fungal Diversity, 2016, 76, 75-96.	4.7	111
34	Novel taxa of thermally dimorphic systemic pathogens in the <i>Ajellomycetaceae</i> (<i>Onygenales</i>). Mycoses, 2017, 60, 296-309.	1.8	111
35	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	1.1	107
36	Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biology, 2011, 115, 987-996.	1.1	102

#	Article	IF	CITATIONS
37	Revision of agents of black-grain eumycetoma in the order <i>Pleosporales</i> . Persoonia: Molecular Phylogeny and Evolution of Fungi, 2014, 33, 141-154.	1.6	102
38	Black Yeasts and Their Filamentous Relatives: Principles of Pathogenesis and Host Defense. Clinical Microbiology Reviews, 2014, 27, 527-542.	5.7	94
39	Exophiala xenobiotica sp. nov., an opportunistic black yeast inhabiting environments rich in hydrocarbons. Antonie Van Leeuwenhoek, 2006, 90, 257-268.	0.7	91
40	Indoor wet cells harbour melanized agents of cutaneous infection. Medical Mycology, 2010, 48, 622-628.	0.3	90
41	Global molecular epidemiology and genetic diversity of <i>Fusarium</i> , a significant emerging group of human opportunists from 1958 to 2015. Emerging Microbes and Infections, 2016, 5, 1-11.	3.0	89
42	Evolution of black yeasts: possible adaptation to the human host. Antonie Van Leeuwenhoek, 1993, 63, 105-109.	0.7	88
43	Conidiogenesis, nutritional physiology and taxonomy ofAureobasidium andHormonema. Antonie Van Leeuwenhoek, 1994, 65, 41-54.	0.7	88
44	Cerebral phaeohyphomycosis caused byFonsecaea monophora. Medical Mycology, 2005, 43, 465-472.	0.3	87
45	<i>Fonsecaea nubica</i> sp. nov, a new agent of human chromoblastomycosis revealed using molecular data. Medical Mycology, 2010, 48, 800-806.	0.3	87
46	Current antifungal treatment of fusariosis. International Journal of Antimicrobial Agents, 2018, 51, 326-332.	1.1	83
47	Molecular techniques for pathogen identification and fungus detection in the environment. IMA Fungus, 2011, 2, 177-189.	1.7	81
48	Specific antifungal susceptibility profiles of opportunists in the Fusarium fujikuroi complex. Journal of Antimicrobial Chemotherapy, 2015, 70, 1068-71.	1.3	81
49	Genetic diversity and species delimitation in the opportunistic genusFonsecaea. Medical Mycology, 2009, 47, 17-25.	0.3	80
50	<i>Exophiala spinifera</i> and its allies: diagnostics from morphology to DNA barcoding. Medical Mycology, 2008, 46, 193-208.	0.3	77
51	Phaeohyphomycoses, Emerging Opportunistic Diseases in Animals. Clinical Microbiology Reviews, 2013, 26, 19-35.	5.7	76
52	Taxonomy of the Trichophyton mentagrophytes/T. interdigitale Species Complex Harboring the Highly Virulent, Multiresistant Genotype T. indotineae. Mycopathologia, 2021, 186, 315-326.	1.3	76
53	Translation elongation factor 1-α gene as a potential taxonomic and identification marker in dermatophytes. Medical Mycology, 2015, 53, 215-224.	0.3	75
54	Dishwashers are a major source of human opportunistic yeast-like fungi in indoor environments in Mersin, Turkey. Medical Mycology, 2013, 51, 493-498.	0.3	74

#	Article	IF	CITATIONS
55	Fungi between extremotolerance and opportunistic pathogenicity on humans. Fungal Diversity, 2018, 93, 195-213.	4.7	73
56	Exophiala sideris, a novel black yeast isolated from environments polluted with toxic alkyl benzenes and arsenic. Fungal Biology, 2011, 115, 1030-1037.	1.1	72
57	Black yeast-like fungi associated with Lethargic Crab Disease (LCD) in the mangrove-land crab, Ucides cordatus (Ocypodidae). Veterinary Microbiology, 2012, 158, 109-122.	0.8	71
58	Phylogeny, ecology and taxonomy of systemic pathogens and their relatives in Ajellomycetaceae (Onygenales): Blastomyces, Emergomyces, Emmonsia, Emmonsiellopsis. Fungal Diversity, 2018, 90, 245-291.	4.7	71
59	Molecular Epidemiology of <i>Fonsecaea</i> Species. Emerging Infectious Diseases, 2011, 17, 464-469.	2.0	68
60	DNA barcoding of fungi causing infections in humans and animals. Fungal Biology, 2016, 120, 125-136.	1.1	67
61	Molecular Epidemiology of Agents of Human Chromoblastomycosis in Brazil with the Description of Two Novel Species. PLoS Neglected Tropical Diseases, 2016, 10, e0005102.	1.3	66
62	Black Molds and Melanized Yeasts Pathogenic to Humans. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019570.	2.9	65
63	Commentaries: Name Changes in Medically Important Fungi and Their Implications for Clinical Practice. Journal of Clinical Microbiology, 2015, 53, 1056-1062.	1.8	65
64	Fatal Exophiala infections in China, with a report of seven cases. Mycoses, 2011, 54, e136-e142.	1.8	63
65	Selective factors involved in oil flotation isolation of black yeasts from the environment. Studies in Mycology, 2008, 61, 157-163.	4.5	62
66	Cyphellophora and its relatives in Phialophora: biodiversity and possible role in human infection. Fungal Diversity, 2014, 65, 17-45.	4.7	62
67	Fonsecaea pugnacius, a Novel Agent of Disseminated Chromoblastomycosis. Journal of Clinical Microbiology, 2015, 53, 2674-2685.	1.8	62
68	Origin and distribution of Sporothrix globosa causing sapronoses in Asia. Journal of Medical Microbiology, 2017, 66, 560-569.	0.7	62
69	Susceptibility and Diversity in the Therapy-Refractory Genus Scedosporium. Antimicrobial Agents and Chemotherapy, 2014, 58, 5877-5885.	1.4	61
70	No to <i>Neocosmospora</i> : Phylogenomic and Practical Reasons for Continued Inclusion of the Fusarium solani Species Complex in the Genus <i>Fusarium</i> . MSphere, 2020, 5, .	1.3	61
71	Microsatellite markers reveal geographic population differentiation in Trichophyton rubrum. Journal of Medical Microbiology, 2007, 56, 1058-1065.	0.7	57
72	<i>In Vitro</i> Activities of Eight Antifungal Drugs against 55 Clinical Isolates of <i>Fonsecaea</i> spp. Antimicrobial Agents and Chemotherapy, 2010, 54, 1636-1638.	1.4	57

#	Article	IF	CITATIONS
73	Fungal/bacterial interactions during the biodegradation of TEX hydrocarbons (toluene, ethylbenzene) Tj ETQq1 2 80, 722-734.	l 0.784314 1.3	rgBT /Oved 57
74	Environmental siblings of black agents of human chromoblastomycosis. Fungal Diversity, 2014, 65, 47-63.	4.7	56
75	<i>Rhinocladiella aquaspersa</i> , proven agent of verrucous skin infection and a novel type of chromoblastomycosis. Medical Mycology, 2010, 48, 696-703.	0.3	55
76	Rapid detection of pathogenic fungi using loop-mediated isothermal amplification, exemplified by Fonsecaea agents of chromoblastomycosis. Journal of Microbiological Methods, 2010, 80, 19-24.	0.7	55
77	New insights in dermatophyte research. Medical Mycology, 2018, 56, S2-S9.	0.3	55
78	Neglected fungal zoonoses: hidden threats to man and animals. Clinical Microbiology and Infection, 2015, 21, 416-425.	2.8	54
79	The â€~species complex' issue in clinically relevant fungi: A case study in Scedosporium apiospermum. Fungal Biology, 2016, 120, 137-146.	1.1	54
80	Emergomyces: The global rise of new dimorphic fungal pathogens. PLoS Pathogens, 2019, 15, e1007977.	2.1	54
81	<i>In vitro</i> combinations of natamycin with voriconazole, itraconazole and micafungin against clinical <i>Fusarium</i> strains causing keratitis: TableÂ1 Journal of Antimicrobial Chemotherapy, 2016, 71, 953-955.	1.3	53
82	Dishwashers provide a selective extreme environment for human-opportunistic yeast-like fungi. Fungal Diversity, 2016, 76, 1-9.	4.7	52
83	Coniosporium epidermidis sp. nov., a new species from human skin. Studies in Mycology, 2008, 61, 131-136.	4.5	51
84	Epidemiological changes in tinea capitis over the sixty years of economic growth in China. Medical Mycology, 2015, 53, 691-698.	0.3	50
85	Phylogeny of dermatophytes with genomic character evaluation of clinically distinct <i>Trichophyton rubrum</i> and <i>T.Âviolaceum</i> . Studies in Mycology, 2018, 89, 153-175.	4.5	50
86	Disseminated Phaeohyphomycosis in Weedy Seadragons (<i>Phyllopteryx Taeniolatus</i>) and Leafy Seadragons (<i>Phycodurus Eques</i>) Caused by Species of <i>Exophiala</i> , Including a Novel Species. Journal of Veterinary Diagnostic Investigation, 2009, 21, 69-79.	0.5	49
87	Molecular Characterization and Antifungal Susceptibility of Clinical Fusarium Species From Brazil. Frontiers in Microbiology, 2019, 10, 737.	1.5	49
88	Evaluation of two novel barcodes for species recognition of opportunistic pathogens in Fusarium. Fungal Biology, 2016, 120, 231-245.	1.1	48
89	Taxonomic and diagnostic markers for identification of <i>Coccidioides immitis</i> and <i>Coccidioides posadasii</i> . Medical Mycology, 2007, 45, 385-393.	0.3	46
90	An updated comprehensive systematic review ofCladophialophora bantianaand analysis of epidemiology, clinical characteristics, and outcome of cerebral cases. Medical Mycology, 2016, 55, myw124.	0.3	45

#	Article	IF	CITATIONS
91	Rapid Identification of Pseudallescheria and Scedosporium Strains by Using Rolling Circle Amplification. Applied and Environmental Microbiology, 2012, 78, 126-133.	1.4	44
92	Severe Disseminated Phaeohyphomycosis in an Immunocompetent Patient Caused by Veronaea botryosa. Mycopathologia, 2013, 175, 497-503.	1.3	44
93	The clinical spectrum of <i>Exophiala jeanselmei</i> , with a case report and <i>in vitro</i> antifungal susceptibility of the species. Medical Mycology, 2010, 48, 318-327.	0.3	43
94	Madurella mycetomatis Is Highly Susceptible to Ravuconazole. PLoS Neglected Tropical Diseases, 2014, 8, e2942.	1.3	43
95	A re-evaluation of the Chaetothyriales using criteria of comparative biology. Fungal Diversity, 2020, 103, 47-85.	4.7	43
96	A novel dimorphic pathogen, <i>Emergomyces orientalis</i> (<i>Onygenales</i>), agent of disseminated infection. Mycoses, 2017, 60, 310-319.	1.8	42
97	Microdilution in vitro antifungal susceptibility of Exophiala dermatitidis, a systemic opportunist. Medical Mycology, 2011, 49, 819-824.	0.3	41
98	Rapid identification of fungal pathogens by rolling circle amplification using <i>Fonsecaea</i> as a model. Mycoses, 2011, 54, e577-82.	1.8	41
99	Detection and identification of opportunistic Exophiala species using the rolling circle amplification of ribosomal internal transcribed spacers. Journal of Microbiological Methods, 2013, 94, 338-342.	0.7	41
100	Rapid identification of Fusarium graminearum species complex using Rolling Circle Amplification (RCA). Journal of Microbiological Methods, 2012, 89, 63-70.	0.7	40
101	DNA barcoding, MALDI-TOF, and AFLP data support Fusarium ficicrescens as a distinct species within the Fusarium fujikuroi species complex. Fungal Biology, 2016, 120, 265-278.	1.1	40
102	The global burden of chromoblastomycosis. PLoS Neglected Tropical Diseases, 2021, 15, e0009611.	1.3	40
103	Fonsecaea multimorphosa sp. nov, a new species of Chaetothyriales isolated from a feline cerebral abscess. Fungal Biology, 2011, 115, 1066-1076.	1.1	39
104	Multilocus differentiation of the related dermatophytes Microsporum canis, Microsporum ferrugineum and Microsporum audouinii. Journal of Medical Microbiology, 2012, 61, 57-63.	0.7	39
105	Novel Phialophora species from leaf-cutting ants (tribe Attini). Fungal Diversity, 2014, 65, 65-75.	4.7	39
106	Genomic Understanding of an Infectious Brain Disease from the Desert. G3: Genes, Genomes, Genetics, 2018, 8, 909-922.	0.8	39
107	Black Yeast Diversity on Creosoted Railway Sleepers Changes with Ambient Climatic Conditions. Microbial Ecology, 2014, 68, 699-707.	1.4	38
108	Rapid Identification of Emerging Human-Pathogenic Sporothrix Species with Rolling Circle Amplification. Frontiers in Microbiology, 2015, 6, 1385.	1.5	38

#	Article	IF	CITATIONS
109	A phylogenetic perspective on the association between ants (Hymenoptera: Formicidae) and black yeasts (Ascomycota: Chaetothyriales). Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162519.	1.2	38
110	The clinical spectrum of Exophiala jeanselmei, with a case report and in vitro antifungal susceptibility of the species. Medical Mycology, 2010, 48, 1-10.	0.3	37
111	A new species, Phialophora europaea, causing superficial infections in humans Eine neue Art, Phialophora europaea, als Erreger oberflachlicher Infektionen beim Menschen. Mycoses, 2000, 43, 409-416.	1.8	36
112	<i>Exophiala asiatica</i> , a new species from a fatal case in China. Medical Mycology, 2009, 47, 101-109.	0.3	36
113	Molecular identification of Penicillium marneffei using rolling circle amplification. Mycoses, 2011, 54, e751-e759.	1.8	36
114	Keratitis by Fusarium temperatum, a novel opportunist. BMC Infectious Diseases, 2014, 14, 588.	1.3	36
115	Application of Isothermal Amplification Techniques for Identification of Madurella mycetomatis, the Prevalent Agent of Human Mycetoma. Journal of Clinical Microbiology, 2015, 53, 3280-3285.	1.8	36
116	Antifungal Susceptibility and Phylogeny of Opportunistic Members of the Genus <i>Fusarium</i> Causing Human Keratomycosis in South India. Medical Mycology, 2016, 54, 287-294.	0.3	36
117	Successful treatment of chromoblastomycosis of 36 years duration caused by <i>Fonsecaea monophora</i> . Medical Mycology, 2010, 48, 390-393.	0.3	35
118	Rapid Identification of Black Grain Eumycetoma Causative Agents Using Rolling Circle Amplification. PLoS Neglected Tropical Diseases, 2014, 8, e3368.	1.3	35
119	In vitro antifungal susceptibility of coelomycete agents of black grain eumycetoma to eight antifungals. Medical Mycology, 2015, 53, 295-301.	0.3	35
120	The role of melanin pathways in extremotolerance and virulence of <i>Fonsecaea</i> revealed by <i>de novo</i> assembly transcriptomics using illumina paired-end sequencing. Studies in Mycology, 2016, 83, 1-18.	4.5	35
121	Species Distinction in the Trichophyton rubrum Complex. Journal of Clinical Microbiology, 2019, 57, .	1.8	35
122	Internal Transcribed Spacer rRNA Gene-Based Phylogenetic Reconstruction Using Algorithms with Local and Global Sequence Alignment for Black Yeasts and Their Relatives. Journal of Clinical Microbiology, 2005, 43, 2816-2823.	1.8	31
123	Comparative Genomics of Sibling Species of Fonsecaea Associated with Human Chromoblastomycosis. Frontiers in Microbiology, 2017, 8, 1924.	1.5	31
124	Invasive chromoblastomycosis and sinusitis due to Phialophora verrucosa in a child from northern Africa. Mycoses, 2005, 48, 456-461.	1.8	30
125	Molecular Mechanisms of 5-Fluorocytosine Resistance in Yeasts and Filamentous Fungi. Journal of Fungi (Basel, Switzerland), 2021, 7, 909.	1.5	29
126	Black yeast habitat choices and species spectrum onÂhighÂaltitude creosote-treated railway ties. Fungal Biology, 2013, 117, 692-696.	1.1	28

#	Article	IF	CITATIONS
127	Black yeasts in the omics era: Achievements and challenges. Medical Mycology, 2018, 56, S32-S41.	0.3	28
128	Microsporum mirabileand its teleomorphArthroderma mirabile, a new dermatophyte species in theM. cookeiclade. Medical Mycology, 2012, 50, 161-169.	0.3	27
129	Diversity of opportunistic black fungi on babassu coconut shells, a rich source of esters and hydrocarbons. Fungal Biology, 2017, 121, 488-500.	1.1	27
130	Potent Activities of Luliconazole, Lanoconazole, and Eight Comparators against Molecularly Characterized Fusarium Species. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	27
131	<i>In Vitro</i> Antifungal Susceptibility of Cladophialophora carrionii, an Agent of Human Chromoblastomycosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 1974-1977.	1.4	26
132	Antifungal Susceptibility Patterns of Opportunistic Fungi in the Genera Verruconis and Ochroconis. Antimicrobial Agents and Chemotherapy, 2014, 58, 3285-3292.	1.4	26
133	Roussoella percutanea, a novel opportunistic pathogen causing subcutaneous mycoses. Medical Mycology, 2014, 52, 689-698.	0.3	26
134	Biodiversity and human-pathogenicity of <i> Phialophora verrucosa</i> and relatives in <i> Chaetothyriales</i> . Persoonia: Molecular Phylogeny and Evolution of Fungi, 2017, 38, 1-19.	1.6	26
135	Relation of Halotolerance to Human-Pathogenicity in the Fungal Tree of Life: An Overview of Ecology and Evolution under Stress. Cellular Origin and Life in Extreme Habitats, 2005, , 371-395.	0.3	26
136	Chromoblastomycosis caused by Rhinocladiella aquaspersa. Medical Mycology Case Reports, 2013, 2, 148-151.	0.7	25
137	Molecular Diagnostics of Arthroconidial Yeasts, Frequent Pulmonary Opportunists. Journal of Clinical Microbiology, 2018, 56, .	1.8	25
138	Global Molecular Diversity of the Halotolerant Fungus Hortaea werneckii. Life, 2018, 8, 31.	1.1	25
139	Epidemiology of <i>Aspergillus</i> species causing keratitis in Mexico. Mycoses, 2019, 62, 144-151.	1.8	25
140	Subcutaneous phaeohyphomycosis caused by Exophiala equina, with susceptibility to eight antifungal drugs. Journal of Medical Microbiology, 2013, 62, 797-800.	0.7	24
141	Phaeohyphomycosis Caused by a Novel Species, Pseudochaetosphaeronema martinelli. Journal of Clinical Microbiology, 2015, 53, 2927-2934.	1.8	24
142	<p>Multiresistant Fusarium Pathogens on Plants and Humans: Solutions in (from) the Antifungal Pipeline?</p> . Infection and Drug Resistance, 2019, Volume 12, 3727-3737.	1.1	24
143	Successful treatment of chromoblastomycosis of 36 years duration caused by Fonsecaea monophora. Medical Mycology, 2010, 48, 1-4.	0.3	24
144	<i>In Vitro</i> Activities of Eight Antifungal Drugs against 104 Environmental and Clinical Isolates of Aureobasidium pullulans. Antimicrobial Agents and Chemotherapy, 2014, 58, 5629-5631.	1.4	22

#	Article	IF	CITATIONS
145	Antifungal Susceptibility of Emerging Dimorphic Pathogens in the Family Ajellomycetaceae. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	22
146	Comparative Genomic Analysis of Capsule-Producing Black Yeasts Exophiala dermatitidis and Exophiala spinifera, Potential Agents of Disseminated Mycoses. Frontiers in Microbiology, 2020, 11, 586.	1.5	22
147	Disseminated Phaeohyphomycosis Due to an Exophiala species in a Galapagos Tortoise, Geochelone nigra. Journal of Herpetological Medicine and Surgery, 2005, 15, 20-26.	0.2	22
148	Identification and Typing of Isolates of Cyphellophora and Relatives by Use of Amplified Fragment Length Polymorphism and Rolling Circle Amplification. Journal of Clinical Microbiology, 2013, 51, 931-937.	1.8	21
149	Cladophialophora abundans, a novel species of Chaetothyriales isolated from the natural environment. Mycological Progress, 2014, 13, 381-391.	0.5	21
150	Global Spread of Human Chromoblastomycosis Is Driven by Recombinant Cladophialophora carrionii and Predominantly Clonal Fonsecaea Species. PLoS Neglected Tropical Diseases, 2015, 9, e0004004.	1.3	21
151	DNA barcoding of clinically relevant Cunninghamella species. Medical Mycology, 2015, 53, 99-106.	0.3	21
152	Comparative Evaluation of Etest, EUCAST, and CLSI Methods for Amphotericin B, Voriconazole, and Posaconazole against Clinically Relevant Fusarium Species. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	21
153	In vitro activity of amphotericin B, itraconazole, terbinafine and 5-fluocytosine against Exophiala spinifera and evaluation of post-antifungal effects. Medical Mycology, 2003, 41, 301-307.	0.3	20
154	<i>In Vitro</i> Activities of Nine Antifungal Drugs against 81 Phialophora and Cyphellophora Isolates. Antimicrobial Agents and Chemotherapy, 2012, 56, 6044-6047.	1.4	20
155	MALDI-TOF MS-based identification of black yeasts of the genus Exophiala. Medical Mycology, 2015, 53, 347-352.	0.3	20
156	Combination of Amphotericin B and Flucytosine against Neurotropic Species of Melanized Fungi Causing Primary Cerebral Phaeohyphomycosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 2346-2351.	1.4	20
157	A Model for Trans-Kingdom Pathogenicity in Fonsecaea Agents of Human Chromoblastomycosis. Frontiers in Microbiology, 2018, 9, 2211.	1.5	20
158	Onygenalean Fungi as Major Human and Animal Pathogens. Mycopathologia, 2020, 185, 1-8.	1.3	20
159	Black Yeast Biota in the Mangrove, in Search of the Origin of the Lethargic Crab Disease (LCD). Mycopathologia, 2013, 175, 421-430.	1.3	19
160	Food preparation with mucoralean fungi: A potential biosafety issue?. Fungal Biology, 2016, 120, 393-401.	1.1	19
161	Prospective application of melanized fungi for the biofiltration of indoor air in closed bioregenerative systems. Journal of Hazardous Materials, 2019, 361, 1-9.	6.5	19
162	Polyphasic Discrimination of Trichophyton tonsurans and T. equinum from Humans and Horses. Mycopathologia, 2020, 185, 113-122.	1.3	19

#	Article	IF	CITATIONS
163	Rapid screening for genotypes as possible markers of virulence in the neurotropic black yeast Exophiala dermatitidis using PCR-RFLP. Journal of Microbiological Methods, 2010, 80, 138-142.	0.7	18
164	Rapid screening for humanâ€pathogenic Mucorales using rolling circle amplification. Mycoses, 2014, 57, 67-72.	1.8	18
165	First Case of Rhinocerebral Mucormycosis Caused by Lichtheimia ornata, with a Review of Lichtheimia Infections. Mycopathologia, 2020, 185, 555-567.	1.3	18
166	Arthrocladium, an unexpected human opportunist in Trichomeriaceae (Chaetothyriales). Fungal Biology, 2016, 120, 207-218.	1.1	17
167	Genomic analysis of ant domatia-associated melanized fungi (Chaetothyriales, Ascomycota). Mycological Progress, 2019, 18, 541-552.	0.5	17
168	A new species, Phialophora europaea, causing superficial infections in humans. Mycoses, 2000, 43, 409-16.	1.8	17
169	Direct detection of Exophiala and Scedosporium species in sputa of patients with cystic fibrosis. Medical Mycology, 2018, 56, 695-702.	0.3	16
170	Comparative pathogenicity of opportunistic black yeasts in <i>Aureobasidium</i> . Mycoses, 2019, 62, 803-811.	1.8	16
171	Shed Light in the DaRk LineagES of the Fungal Tree of Life—STRES. Life, 2020, 10, 362.	1.1	16
172	Phylogenetic and ecological reevaluation of the order Onygenales. Fungal Diversity, 2022, 115, 1-72.	4.7	16
173	Indoor wet cells as a habitat for melanized fungi, opportunistic pathogens on humans and other vertebrates. Scientific Reports, 2018, 8, 7685.	1.6	15
174	Intraspecific Diversity and Taxonomy of Emmonsia crescens. Mycopathologia, 2020, 185, 613-627.	1.3	15
175	Molecular and Phenotypic Characterization of Nannizzia (Arthrodermataceae). Mycopathologia, 2020, 185, 9-35.	1.3	14
176	<i>In Vitro</i> Activities of Eight Antifungal Drugs against 106 Waterborne and Cutaneous Exophiala Species. Antimicrobial Agents and Chemotherapy, 2013, 57, 6395-6398.	1.4	12
177	In vitro activities of antifungal drugs against environmental <i>Exophiala</i> isolates and review of the literature. Mycoses, 2018, 61, 561-569.	1.8	12
178	Transcriptome-wide expression profiling of Sporothrix schenckii yeast and mycelial forms and the establishment of the Sporothrix Genome DataBase. Microbial Genomics, 2020, 6, .	1.0	12
179	Evaluation of two molecular techniques for rapid detection of the main dermatophytic agents of tinea capitis. British Journal of Dermatology, 2015, 173, 1494-1500.	1.4	11
180	First report of urease activity in the novel systemic fungal pathogen Emergomyces africanus: a comparison with the neurotrope Cryptococcus neoformans. FEMS Yeast Research, 2017, 17, .	1.1	11

#	Article	IF	CITATIONS
181	Combination of Amphotericin B and Terbinafine against Melanized Fungi Associated with Chromoblastomycosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	11
182	New Molecular Markers Distinguishing Fonsecaea Agents of Chromoblastomycosis. Mycopathologia, 2019, 184, 493-504.	1.3	11
183	A Comparison of Isolation Methods for Black Fungi Degrading Aromatic Toxins. Mycopathologia, 2019, 184, 653-660.	1.3	11
184	Whole-genome resequencing of Trichophyton rubrum provides insights into population differentiation and drug resistance. Mycopathologia, 2020, 185, 103-112.	1.3	11
185	Chromoblastomycosis in an Endemic Area of Brazil: A Clinical-Epidemiological Analysis and a Worldwide Haplotype Network. Journal of Fungi (Basel, Switzerland), 2020, 6, 204.	1.5	11
186	Regional Differences in Antifungal Susceptibility of the Prevalent Dermatophyte Trichophyton rubrum. Mycopathologia, 2021, 186, 53-70.	1.3	11
187	Sequence data from isolated lichen-associated melanized fungi enhance delimitation of two new lineages within Chaetothyriomycetidae. Mycological Progress, 2021, 20, 911-927.	0.5	11
188	Emerging Animal-Associated Fungal Diseases. Journal of Fungi (Basel, Switzerland), 2022, 8, 611.	1.5	11
189	<i>In vitro</i> antifungal susceptibility of <i>Trichophyton violaceum</i> isolated from tinea capitis patients. Journal of Antimicrobial Chemotherapy, 2015, 70, 1072-1075.	1.3	10
190	Three Isothermal Amplification Techniques for Rapid Identification of Cladophialophora carrionii, an Agent of Human Chromoblastomycosis. Journal of Clinical Microbiology, 2014, 52, 3531-3535.	1.8	10
191	Barcoding and species recognition of opportunistic pathogens in Ochroconis and Verruconis. Fungal Biology, 2016, 120, 219-230.	1.1	10
192	<p>Oral Prevalence of Candida Species in Patients Undergoing Systemic Glucocorticoid Therapy and the Antifungal Sensitivity of the Isolates</p> . Infection and Drug Resistance, 2020, Volume 13, 2601-2607.	1.1	10
193	In VitroInteraction of Currently Used Azoles with Terbinafine against Madurella mycetomatis. Antimicrobial Agents and Chemotherapy, 2015, 59, 1373-1374.	1.4	9
194	Draft Genome Sequence of the Ant-Associated Fungus Phialophora attae (CBS 131958). Genome Announcements, 2015, 3, .	0.8	9
195	Rapid Identification of Seven Waterborne Exophiala Species by RCA DNA Padlock Probes. Mycopathologia, 2018, 183, 669-677.	1.3	9
196	Distribution of Pathogens and Outbreak Fungi in the Fungal Kingdom. , 2018, , 3-16.		9
197	Virulence and antifungal susceptibility of microsatellite genotypes of <scp><i>Candida albicans</i></scp> from superficial and deep locations. Yeast, 2019, 36, 363-373.	0.8	9
198	Environmental prospecting of black yeast-like agents of human disease using culture-independent methodology. Scientific Reports, 2020, 10, 14229.	1.6	9

#	Article	IF	CITATIONS
199	Selective isolation of agents of chromoblastomycosis from insect-associated environmental sources. Fungal Biology, 2020, 124, 194-204.	1.1	9
200	Novel black yeast-like species in chaetothyriales with ant-associated life styles. Fungal Biology, 2021, 125, 276-284.	1.1	9
201	Chromoblastomycosis Caused by Phialophora—Proven Cases from Mexico. Journal of Fungi (Basel,) Tj ETQq1	1 0.78431 1.5	4 rgBT /Overlo
202	Nomenclatural notes on <i>Nadsoniella</i> and the human opportunist black yeast genus <i>Exophiala</i> . Mycoses, 2017, 60, 358-365.	1.8	8
203	Ultra-High-Resolution Mass Spectrometry for Identification of Closely Related Dermatophytes with Different Clinical Predilections. Journal of Clinical Microbiology, 2018, 56, .	1.8	8
204	Changing Concepts and Current Definition of Majocchi's Granuloma. Mycopathologia, 2019, 185, 187-192.	1.3	8
205	Draft Genome Sequence of Fonsecaea monophora Strain CBS 269.37, an Agent of Human Chromoblastomycosis. Genome Announcements, 2016, 4, .	0.8	7
206	Bipolaris oryzae, a novel fungal opportunist causing keratitis. Diagnostic Microbiology and Infectious Disease, 2016, 85, 61-65.	0.8	7
207	Comparison of the rolling circle amplification and ligase-dependent reaction methods for the identification of opportunistic Exophiala species. Medical Mycology, 2018, 56, 759-769.	0.3	7
208	Molecular and MALDIâ€ToF MS differentiation and antifungal susceptibility of prevalent clinical Fusarium species in China. Mycoses, 2021, 64, 1261-1271.	1.8	7
209	Basidiobolus omanensis sp. nov. Causing Angioinvasive Abdominal Basidiobolomycosis. Journal of Fungi (Basel, Switzerland), 2021, 7, 653.	1.5	7
210	Comparative genomics of opportunistic <i>Phialophora</i> species involved in divergent disease types. Mycoses, 2021, 64, 555-568.	1.8	7
211	Implantation phaeohyphomycosis caused by a non-sporulating Chaetomium species. Journal De Mycologie Medicale, 2014, 24, 161-165.	0.7	6
212	(2465–2466) Proposals to conserve <i>Blastomyces</i> Gilchrist & W. R. Stokes against <i>Blastomyces</i> Costantin & Rolland and <i>Ajellomycetaceae</i> against <i>Paracoccidioidaceae</i> (<i>Ascomycota</i> : <i>Onygenales</i>). Taxon, 2016, 65, 1167-1169.	0.4	6
213	Draft Genome Sequence of <i>Fonsecaea nubica</i> Strain CBS 269.64, Causative Agent of Human Chromoblastomycosis. Genome Announcements, 2016, 4, .	0.8	6
214	Peritonitis by Exophiala dermatitidis in a pediatric patient. Medical Mycology Case Reports, 2019, 24, 18-22.	0.7	6
215	Disseminated Mycosis by <i>Arthrocladium</i> <i>fulminans</i> Jeopardizing a Patient with GATA2 Deficiency. Respiration, 2019, 97, 472-475.	1.2	6
216	Comparative Analysis of Clinical and Environmental Strains of Exophiala spinifera by Long-Reads Sequencing and RNAseq Reveal Adaptive Strategies. Frontiers in Microbiology, 2020, 11, 1880.	1.5	6

#	Article	IF	CITATIONS
217	Black fungi and ants: a genomic comparison of species inhabiting carton nests versus domatia. IMA Fungus, 2022, 13, 4.	1.7	6
218	Species borderlines in Fusarium exemplified by F. circinatum/F. subglutinans. Fungal Genetics and Biology, 2019, 132, 103262.	0.9	5
219	Genomics and Virulence of Fonsecaea pugnacius, Agent of Disseminated Chromoblastomycosis. Frontiers in Genetics, 2020, 11, 822.	1.1	5
220	Volatile Organic Compounds in the Azteca/Cecropia Ant-Plant Symbiosis and the Role of Black Fungi. Journal of Fungi (Basel, Switzerland), 2021, 7, 836.	1.5	5
221	Phylogenetic Revision and Patterns of Host Specificity in the Fungal Subphylum Entomophthoromycotina. Microorganisms, 2022, 10, 256.	1.6	5
222	Disseminated Cryptococcosis Presenting as Cellulitis Diagnosed by Laser Capture Microdissection: A Case Report and Literature Review. Mycopathologia, 2021, 186, 423-433.	1.3	4
223	Genome Sequence of the Human Opportunistic Fungus Arthrocladium fulminans (CBS 136243). G3: Genes, Genomes, Genetics, 2020, 10, 1817-1821.	0.8	3
224	Environmental Screening of Fonsecaea Agents of Chromoblastomycosis Using Rolling Circle Amplification. Journal of Fungi (Basel, Switzerland), 2020, 6, 290.	1.5	3
225	In vitro activities of 8 antifungal drugs against 126 clinical and environmental <i>Exophiala</i> isolates. Mycoses, 2021, 64, 1328-1333.	1.8	3
226	New record of Aureobasidium mangrovei from plant debris in the Sultanate of Oman Czech Mycology, 2019, 71, 219-229.	0.2	3
227	Agrobacterium tumefaciens-Mediated Transformation of Fonsecaea monophora and Fonsecaea erecta for Host-Environment Interaction Studies. Journal of Fungi (Basel, Switzerland), 2020, 6, 325.	1.5	2
228	Shared Physiological Traits of Exophiala Species in Cold-Blooded Vertebrates, as Opportunistic Black Yeasts. Mycopathologia, 2016, 181, 353-362.	1.3	1
229	<i>Phaeoacremonium sphinctrophorum</i> as a Novel Agent of Eumycetoma. JAMA Dermatology, 2016, 152, 1063.	2.0	1
230	New molecular marker for phylogenetic reconstruction of black yeast-like fungi (Chaetothyriales) with hypothetical EIF2AK2 kinase gene. Fungal Biology, 2020, 124, 1032-1038.	1.1	1
231	Recent developments in less known and multi-resistant fungal opportunists. Critical Reviews in Microbiology, 2021, 47, 762-780.	2.7	1
232	Development and Analysis of qPCR for the Identification of Arthroconidial Yeasts of the Genus Magnusiomyces. Mycopathologia, 2021, 186, 41-51.	1.3	1
233	Meanderella rijsii, a new opportunist in the fungal order Pleosporales. Microbes and Infection, 2022, 24, 104932.	1.0	1
234	<i>In vitro</i> activity of eight antifungal drugs against <i>Chaetomiaceae</i> . Medical Mycology, 2021, 60, .	0.3	1

#	Article	IF	CITATIONS
235	Majocchi's granuloma: Autoinoculation and adaption of Trichophyton rubrum with molecular evidence. Mycoses, 2021, 64, 1272-1278.	1.8	0
236	Ultrastructure of hyphal cells of the dermatophyte Trichophyton tonsurans. Current Medical Mycology, 2020, 6, 42-46.	0.8	0
237	New Insights on Environmental Occurrence of Pathogenic Fungi Based on Metagenomic Data from Brazilian Cerrado Biome. Brazilian Archives of Biology and Technology, 0, 65, .	0.5	0