Steven R Wisniewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/495425/publications.pdf

Version: 2024-02-01

40 papers 1,490 citations

331670 21 h-index 315739 38 g-index

41 all docs

41 docs citations

41 times ranked

1299 citing authors

#	Article	IF	Citations
1	Ligand-Promoted <i>Meta</i> -C–H Arylation of Anilines, Phenols, and Heterocycles. Journal of the American Chemical Society, 2016, 138, 9269-9276.	13.7	216
2	Nickel-Catalyzed 1,2-Diarylation of Simple Alkenyl Amides. Journal of the American Chemical Society, 2018, 140, 17878-17883.	13.7	161
3	Overcoming the Limitations of γ- and δ-C–H Arylation of Amines through Ligand Development. Journal of the American Chemical Society, 2018, 140, 17884-17894.	13.7	156
4	A Convergent, Modular Approach to Functionalized 2,1-Borazaronaphthalenes from 2-Aminostyrenes and Potassium Organotrifluoroborates. Journal of Organic Chemistry, 2014, 79, 365-378.	3.2	83
5	Ni(COD)(DQ): An Airâ€Stable 18â€Electron Nickel(0)–Olefin Precatalyst. Angewandte Chemie - International Edition, 2020, 59, 7409-7413.	13.8	82
6	Nickelâ€Catalyzed 1,2â€Diarylation of Alkenyl Carboxylates: A Gateway to 1,2,3â€Trifunctionalized Building Blocks. Angewandte Chemie - International Edition, 2020, 59, 1201-1205.	13.8	69
7	Reductive Cross-Coupling of 3-Bromo-2,1-borazaronaphthalenes with Alkyl Iodides. Organic Letters, 2014, 16, 3692-3695.	4.6	58
8	Accessing Molecularly Complex Azaborines: Palladium-Catalyzed Suzuki–Miyaura Cross-Couplings of Brominated 2,1-Borazaronaphthalenes and Potassium Organotrifluoroborates. Journal of Organic Chemistry, 2014, 79, 6663-6678.	3.2	58
9	Adventures in Atropisomerism: Total Synthesis of a Complex Active Pharmaceutical Ingredient with Two Chirality Axes. Organic Letters, 2018, 20, 3736-3740.	4.6	45
10	Palladium-Catalyzed Amidation and Amination of (Hetero)aryl Chlorides under Homogeneous Conditions Enabled by a Soluble DBU/NaTFA Dual-Base System. Organic Process Research and Development, 2019, 23, 1529-1537.	2.7	39
11	Ligand-Enabled Pd(II)-Catalyzed C(sp ³)â€"H Lactonization Using Molecular Oxygen as Oxidant. Organic Letters, 2020, 22, 3960-3963.	4.6	38
12	Synthesis and Suzuki–Miyaura Crossâ€Coupling of Enantioenriched Secondary Potassium βâ€Trifluoroboratoamides: Catalytic, Asymmetric Conjugate Addition of Bisboronic Acid and Tetrakis(dimethylamino)diboron to α,βâ€Unsaturated Carbonyl Compounds. Advanced Synthesis and Catalysis, 2013, 355, 3037-3057.	4.3	36
13	Accessing an Azaborine Building Block: Synthesis and Substitution Reactions of 2-Chloromethyl-2,1-borazaronaphthalene. Organic Letters, 2014, 16, 5636-5639.	4.6	31
14	A Process Chemistry Benchmark for sp ² â€"sp ³ Cross Couplings. Journal of Organic Chemistry, 2021, 86, 10380-10396.	3.2	30
15	Improving Robustness: In Situ Generation of a Pd(0) Catalyst for the Cyanation of Aryl Bromides. Journal of Organic Chemistry, 2017, 82, 7040-7044.	3.2	26
16	Advances in Base-Metal Catalysis: Development of a Screening Platform for Nickel-Catalyzed Borylations of Aryl (Pseudo)halides with B ₂ (OH) ₄ . Organometallics, 2019, 38, 157-166.	2.3	24
17	Ni-Catalyzed 1,2-Diarylation of Alkenyl Ketones: A Comparative Study of Carbonyl-Directed Reaction Systems. Organic Letters, 2021, 23, 5311-5316.	4.6	24
18	Utilizing Native Directing Groups: Synthesis of a Selective I _{Kur} Inhibitor, BMS-919373, via a Regioselective C–H Arylation. Journal of Organic Chemistry, 2019, 84, 4704-4714.	3.2	23

#	Article	IF	Citations
19	Pd- and Ni-Based Systems for the Catalytic Borylation of Aryl (Pseudo)halides with B ₂ (OH) ₄ . Journal of Organic Chemistry, 2020, 85, 10334-10349.	3.2	23
20	Cobalt-Catalyzed C(sp ²)–C(sp ³) Suzuki–Miyaura Cross Coupling. Organic Letters, 2021, 23, 625-630.	4.6	23
21	Accessing 2-(Hetero)arylmethyl-, -allyl-, and -propargyl-2,1-borazaronaphthalenes: Palladium-Catalyzed Cross-Couplings of 2-(Chloromethyl)-2,1-borazaronaphthalenes. Organic Letters, 2014, 16, 6024-6027.	4.6	22
22	Accessing 2,1-Borazaronaphthols: Self-Arylation of 1-Alkyl-2-aryl-3-bromo-2,1-borazaronaphthalenes. Journal of Organic Chemistry, 2014, 79, 8339-8347.	3.2	22
23	Selectivity in the Elaboration of Bicyclic Borazarenes. Advanced Synthesis and Catalysis, 2021, 363, 2256-2273.	4.3	22
24	Suzuki–Miyaura Cross-Coupling of Brominated 2,1-Borazaronaphthalenes with Potassium Alkenyltrifluoroborates. Journal of Organic Chemistry, 2014, 79, 11199-11204.	3.2	21
25	Nickelâ€Catalyzed 1,2â€Diarylation of Alkenyl Carboxylates: A Gateway to 1,2,3â€Trifunctionalized Building Blocks. Angewandte Chemie, 2020, 132, 1217-1221.	2.0	19
26	Cobalt-Catalyzed C(sp ²)–C(sp ³) Suzuki–Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands. ACS Catalysis, 2022, 12, 1905-1918.	11.2	16
27	Diboron-Promoted Reduction of Ni(II) Salts: Precatalyst Activation Studies Relevant to Ni-Catalyzed Borylation Reactions. Organometallics, 2021, 40, 2691-2700.	2.3	15
28	Photoredox Catalysis Enables Access to N-Functionalized 2,1-Borazaronaphthalenes. Organic Letters, 2019, 21, 2880-2884.	4.6	14
29	Ni(COD)(DQ): An Airâ€Stable 18â€Electron Nickel(0)–Olefin Precatalyst. Angewandte Chemie, 2020, 132, 7479-7483.	2.0	14
30	Advancing Base-Metal Catalysis: Development of a Screening Method for Nickel-Catalyzed Suzukiâ€"Miyaura Reactions of Pharmaceutically Relevant Heterocycles. Organic Process Research and Development, 2022, 26, 785-794.	2.7	13
31	Ni(COD)(DMFU): A Heteroleptic 16-Electron Precatalyst for 1,2-Diarylation of Alkenes. Synlett, 2021, 32, 1570-1574.	1.8	11
32	Adventures in Atropisomerism: Development of a Robust, Diastereoselective, Lithium-Catalyzed Atropisomer-Forming Active Pharmaceutical Ingredient Step. Organic Process Research and Development, 2018, 22, 1426-1431.	2.7	9
33	Utilizing Native Directing Groups: Mechanistic Understanding of a Direct Arylation Leads to Formation of Tetracyclic Heterocycles via Tandem Intermolecular, Intramolecular C–H Activation. Journal of Organic Chemistry, 2019, 84, 7961-7970.	3.2	9
34	Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling Facilitated by a Weak Amine Base with Water as a Cosolvent. Organometallics, 2022, 41, 1269-1274.	2.3	9
35	Advancing Base Metal Catalysis through Data Science: Insight and Predictive Models for Ni-Catalyzed Borylation through Supervised Machine Learning. Organometallics, 2022, 41, 1847-1864.	2.3	7
36	Systematic Optimization of a Robust Telescoped Process for a BTK Inhibitor with Atropisomer Control by High-Throughput Experimentation, Design of Experiments, and Linear Regression. Organic Process Research and Development, 2019, 23, 1143-1151.	2.7	6

#	Article	IF	CITATION
37	An Under-Appreciated Source of Reproducibility Issues in Cross-Coupling: Solid-State Decomposition of Primary Sodium Alkoxides in Air. ACS Catalysis, 2021, 11, 502-508.	11.2	6
38	Development and Implementation of a Quality Control Strategy for an Atropisomer Impurity Grounded in a Risk-Based Probabilistic Design Space. Organic Process Research and Development, 2019, 23, 211-219.	2.7	5
39	Development of a telescoped synthesis of $4-(1H)$ -cyanoimidazole core accelerated by orthogonal reaction monitoring. Reaction Chemistry and Engineering, 2020, 5, 1421-1428.	3.7	2
40	Scalability and Predictability of Polymorph Transformations Under High Shear. Organic Process Research and Development, 2021, 25, 1028-1035.	2.7	2