Xinxiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4954060/publications.pdf

Version: 2024-02-01

38	856	18	28
papers	citations	h-index	g-index
39	39	39	850 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Solâ^'Gel Preparation of PDMS/Silica Hybrid Antireflective Coatings with Controlled Thickness and Durable Antireflective Performance. Journal of Physical Chemistry C, 2010, 114, 19979-19983.	3.1	101
2	Facile method for the hydrophobic modification of filter paper for applications in water-oil separation. Surface and Coatings Technology, 2018, 352, 313-319.	4.8	46
3	Ultra-lightweight cellulose foam material: preparation and properties. Cellulose, 2017, 24, 1417-1426.	4.9	45
4	Preparation of highly hydrophobic and anti-fouling wood using poly(methylhydrogen)siloxane. Cellulose, 2018, 25, 7341-7353.	4.9	45
5	A one-pot sol–gel process to prepare a superhydrophobic and environment-resistant thin film from ORMOSIL nanoparticles. RSC Advances, 2014, 4, 9838.	3.6	41
6	Three-layer tri-wavelength broadband antireflective coatings built from refractive indices controlled silica thin films. Journal of Sol-Gel Science and Technology, 2016, 80, 1-9.	2.4	41
7	Fabrication of transparent and durable superhydrophobic polysiloxane/SiO2 coating on the wood surface. Cellulose, 2021, 28, 3745-3758.	4.9	37
8	Dehydrogenation-driven assembly of transparent and durable superhydrophobic ORMOSIL coatings on cellulose-based substrates. Cellulose, 2020, 27, 7805-7821.	4.9	34
9	Insight into the Organic–Inorganic Hybrid and Microstructure Tailor Mechanism of Sol–Gel ORMOSIL Antireflective Coatings. Journal of Physical Chemistry C, 2018, 122, 596-603.	3.1	31
10	Characterization of sol-gel ORMOSIL antireflective coatings from phenyltriethoxysilane and tetraethoxysilane: Microstructure control and application. Surface and Coatings Technology, 2018, 345, 177-182.	4.8	30
11	Sol-gel preparation of self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective coating for solar glass. Results in Physics, 2018, 8, 532-536.	4.1	30
12	Preparation and characterization of polyvinyl butyral/silica hybrid antireflective coating: effect of PVB on moisture-resistance and hydrophobicity. Journal of Sol-Gel Science and Technology, 2010, 53, 79-84.	2.4	26
13	Fabrication of Hydrophobic ZnO/PMHS Coatings on Bamboo Surfaces: The Synergistic Effect of ZnO and PMHS on Anti-Mildew Properties. Coatings, 2019, 9, 15.	2.6	25
14	Ultra-fast surface hydrophobic modification of sol–gel silica antireflective coating with enhanced abrasion-resistance. Materials Letters, 2013, 104, 31-33.	2.6	24
15	Key Improvements in Interfacial Adhesion and Dispersion of Fibers/Fillers in Polymer Matrix Composites; Focus on PLA Matrix Composites. Composite Interfaces, 2022, 29, 1071-1120.	2.3	24
16	Hydrophobic Modification of Nanocellulose via a Two-Step Silanation Method. Polymers, 2018, 10, 1035.	4.5	23
17	Highly Hydrophobic Cotton Fabrics Modified by Poly(methylhydrogen)siloxane and Fluorinated Olefin: Characterization and Applications. Polymers, 2020, 12, 833.	4.5	21
18	Sol–gel preparation of antireflective coatings at 351Ânm with different thickness and improved moisture-resistance. Journal of Sol-Gel Science and Technology, 2011, 58, 340-344.	2.4	20

#	Article	IF	CITATIONS
19	Non-supercritical drying sol–gel preparation of superhydrophobic aerogel ORMOSIL thin films with controlled refractive index. Journal of Sol-Gel Science and Technology, 2015, 74, 594-602.	2.4	18
20	Surface Hydrophobic Modification of Microcrystalline Cellulose by Poly(methylhydro)siloxane Using Response Surface Methodology. Polymers, 2018, 10, 1335.	4.5	15
21	Superhydrophobic materials with good oil/water separation and self-cleaning property. Cellulose, 2021, 28, 10425-10439.	4.9	15
22	Sol–gel preparation of fluoro-containing ORMOSIL antireflective coating with resistance simultaneously to hydrophilic and oleophilic pollutants. Journal of Sol-Gel Science and Technology, 2015, 74, 698-706.	2.4	14
23	Preparation of SiO2 nanoparticles with adjustable size for fabrication of SiO2/PMHS ORMOSIL superhydrophobic surface on cellulose-based substrates. Progress in Organic Coatings, 2020, 138, 105384.	3.9	14
24	Refractive-tunable and hydrophobic antireflective coatings by PMHS-modification assisted sol–gel method. Materials Letters, 2017, 186, 123-126.	2.6	13
25	Surface Modification of Sol-Gel Silica Antireflective Coatings by F-PMHS: A Simple Method for Improvement of Amphiphobicity. Coatings, 2018, 8, 57.	2.6	13
26	In Situ Fabrication of a Superhydrophobic ORMOSIL Coating on Wood by an Ammonia–HMDS Vapor Treatment. Coatings, 2019, 9, 556.	2.6	13
27	Environment-resistant fluoro-containing antireflective coatings for high-powered laser systems. RSC Advances, 2014, 4, 48872-48875.	3.6	12
28	SiO2–ORMOSIL double-layered broadband antireflective coating for high-power laser system. Journal of Sol-Gel Science and Technology, 2016, 79, 558-563.	2.4	12
29	A simple method to control the microstructure and properties of sol–gel silica antireflective coatings. RSC Advances, 2017, 7, 31950-31959.	3.6	12
30	Hydrophobic wood flour derived from a novel p-TsOH treatment for improving interfacial compatibility of wood/HDPE composites. Cellulose, 2020, 27, 4053-4065.	4.9	12
31	Effect of poly(methylhydrogen)siloxane modification on adjusting mechanical properties of bamboo flourâ€reinforced HDPE composites. Cellulose, 2021, 28, 5463.	4.9	9
32	Facile Fabrication of Fluorine-Free, Anti-Icing, and Multifunctional Superhydrophobic Surface on Wood Substrates. Polymers, 2022, 14, 1953.	4.5	9
33	Effect of TDI-Assisted Hydrophobic Surface Modification of Microcrystalline Cellulose on the Tensile Fracture of MCC/PLA Composite, and Estimation of the Degree of Substitution by Linear Regression. Langmuir, 2021, 37, 793-801.	3.5	8
34	Focus on moisture-resistance and hydrophobicity of SiO2 antireflective film improved by poly(isopropylene oxide) glycerolether. Journal of Sol-Gel Science and Technology, 2011, 60, 11-16.	2.4	6
35	Design and sol–gel preparation of a six-layer tri-wavelength ORMOSIL antireflective coating for a high power laser system. RSC Advances, 2016, 6, 31769-31774.	3.6	6
36	An Effective, Economical and Ultra-Fast Method for Hydrophobic Modification of NCC Using Poly(Methylhydrogen)Siloxane. Polymers, 2019, 11, 963.	4.5	6

3

#	Article	IF	CITATIONS
37	Environment-Friendly and Two-Component Method for Fabrication of Highly Hydrophobic Wood Using Poly(methylhydrogen)siloxane. Polymers, 2021, 13, 124.	4.5	4
38	Processing pulp fiber into high strength composites. Composite Interfaces, 0, , 1-15.	2.3	1