Vladimir Marianov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4953758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Store location with multipurpose shopping trips and a new random utility customers' choice model. European Journal of Operational Research, 2023, 305, 708-721.	3.5	8
2	The leader multipurpose shopping location problem. European Journal of Operational Research, 2022, 302, 470-481.	3.5	11
3	Vehicle routing for milk collection with gradual blending: A case arising in Chile. European Journal of Operational Research, 2022, 303, 1403-1416.	3.5	4
4	Perspectives on modeling hub location problems. European Journal of Operational Research, 2021, 291, 1-17.	3.5	88
5	The Follower Competitive Location Problem with Comparison-Shopping. Networks and Spatial Economics, 2020, 20, 367-393.	0.7	16
6	Maximizing political vote in multiple districts. Socio-Economic Planning Sciences, 2020, 72, 100896.	2.5	2
7	Stability of utility functions and apportionment rules in location models. Top, 2020, 28, 772-792.	1.1	0
8	A multi-product maximin hazmat routing-location problem with multiple origin-destination pairs. Journal of Cleaner Production, 2019, 240, 118193.	4.6	18
9	Systematically Incorporating Environmental Objectives into Shale Gas Pipeline Development: A Binary Integer, Multiobjective Spatial Optimization Model. Environmental Science & Technology, 2019, 53, 7155-7162.	4.6	3
10	A single allocation p-hub median problem with general piecewise-linear costs in arcs. Computers and Industrial Engineering, 2019, 128, 477-491.	3.4	18
11	Competitive Location Models. , 2019, , 391-429.		8
12	Effects of multipurpose shopping trips on retail store location in a duopoly. European Journal of Operational Research, 2018, 269, 782-792.	3.5	22
13	On the effect of inventory policies on distribution network design with several demand classes. Transportation Research, Part E: Logistics and Transportation Review, 2018, 111, 229-240.	3.7	8
14	Corridor-based metro network design with travel flow capture. Computers and Operations Research, 2018, 89, 58-67.	2.4	16
15	The milk collection problem with blending and collection points. Computers and Electronics in Agriculture, 2017, 134, 109-123.	3.7	28
16	Location Models for Emergency Service Applications. , 2017, , 234-271.		8
17	Multi-objective rapid transit network design with modal competition: The case of Concepción, Chile. Computers and Operations Research, 2017, 78, 27-43.	2.4	42
18	Hazardous materials collection with multiple-product loading. Journal of Cleaner Production, 2017, 141, 909-919.	4.6	23

#	Article	IF	CITATIONS
19	Asymmetries in Competitive Location Models on the Line. Springer Optimization and Its Applications, 2017, , 105-128.	0.6	1
20	The maxisum and maximin-maxisum HAZMAT routing problems. Transportation Research, Part E: Logistics and Transportation Review, 2016, 93, 316-333.	3.7	16
21	Scheduling operating rooms with consideration of all resources, post anesthesia beds and emergency surgeries. Computers and Industrial Engineering, 2016, 97, 248-257.	3.4	66
22	A milk collection problem with blending. Transportation Research, Part E: Logistics and Transportation Review, 2016, 94, 26-43.	3.7	33
23	Maximizing the minimum cover probability by emergency facilities. Annals of Operations Research, 2016, 246, 349-362.	2.6	9
24	On agglomeration in competitive location models. Annals of Operations Research, 2016, 246, 31-55.	2.6	30
25	A reconfiguration of fire station and fleet locations for the Santiago Fire Department. International Journal of Production Research, 2016, 54, 3170-3186.	4.9	17
26	Implications of dynamic spectrum management for regulation. Telecommunications Policy, 2015, 39, 563-579.	2.6	10
27	Locating fixed roadside units in a bus transport network for maximum communications probability. Transportation Research Part C: Emerging Technologies, 2015, 53, 35-47.	3.9	19
28	Location Analysis in Practice. Profiles in Operations Research, 2015, , 1-22.	0.3	3
29	Joint location-inventory problem with differentiated service levels using critical level policy. Transportation Research, Part E: Logistics and Transportation Review, 2015, 83, 141-157.	3.7	23
30	Location modeling for municipal solid waste facilities. Computers and Operations Research, 2015, 62, 305-315.	2.4	77
31	The maximin HAZMAT routing problem. European Journal of Operational Research, 2015, 241, 15-27.	3.5	42
32	Competitive Location Models. , 2015, , 365-398.		24
33	Multicriteria decision making under uncertainty: a visual approach. International Transactions in Operational Research, 2014, 21, 525-540.	1.8	15
34	A bi-objective model for the location of landfills for municipal solid waste. European Journal of Operational Research, 2014, 235, 187-194.	3.5	68
35	A competitive hub location and pricing problem. European Journal of Operational Research, 2013, 231, 734-744.	3.5	95
36	Rapid transit network design for optimal cost and origin–destination demand capture. Computers and Operations Research, 2013, 40, 3000-3009.	2.4	40

#	Article	IF	CITATIONS
37	p-Hub approach for the optimal park-and-ride facility location problem. European Journal of Operational Research, 2013, 226, 277-285.	3.5	85
38	Location Analysis. , 2013, , 892-899.		0
39	Optimizing location and size of rural schools in Chile. International Transactions in Operational Research, 2012, 19, 695-710.	1.8	23
40	Transmitter location for maximum coverage and constructive–destructive interference management. Computers and Operations Research, 2012, 39, 1441-1449.	2.4	9
41	A branch-and-cluster coordination scheme for selecting prison facility sites under uncertainty. Computers and Operations Research, 2012, 39, 2232-2241.	2.4	15
42	Mobile phone tower location for survival after natural disasters. European Journal of Operational Research, 2012, 216, 563-572.	3.5	22
43	Lagrangean relaxation heuristics for the p-cable-trench problem. Computers and Operations Research, 2012, 39, 620-628.	2.4	11
44	Median Problems in Networks. Profiles in Operations Research, 2011, , 39-59.	0.3	13
45	Foundations of Location Analysis. Profiles in Operations Research, 2011, , .	0.3	115
46	Location of Multiple-Server Common Service Centers or Facilities, for Minimizing General Congestion and Travel Cost Functions. International Regional Science Review, 2011, 34, 323-338.	1.0	11
47	Pioneering Developments in Location Analysis. Profiles in Operations Research, 2011, , 3-22.	0.3	12
48	Lagrangean Relaxation-Based Techniques for Solving Facility Location Problems. Profiles in Operations Research, 2011, , 391-420.	0.3	3
49	A branch and cut algorithm for the hierarchical network design problem. European Journal of Operational Research, 2010, 200, 28-35.	3.5	21
50	Minimum cost path location for maximum traffic capture. Computers and Industrial Engineering, 2010, 58, 332-341.	3.4	6
51	A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows. European Journal of Operational Research, 2010, 206, 341-349.	3.5	82
52	Location of single-server immobile facilities subject to a loss constraint. Journal of the Operational Research Society, 2010, 61, 987-999.	2.1	7
53	Determination of Feeder Areas for the Design of Large Distribution Networks. IEEE Transactions on Power Delivery, 2010, 25, 1912-1922.	2.9	30
54	A single vehicle routing problem with fixed delivery and optional collections. IIE Transactions, 2009, 41, 1067-1079.	2.1	21

#	Article	IF	CITATIONS
55	Optimal Capacity Expansion in Electric Power Subtransmission Networks. Journal of Energy Engineering - ASCE, 2009, 135, 98-105.	1.0	2
56	Gradual location set covering with service quality. Socio-Economic Planning Sciences, 2009, 43, 121-130.	2.5	59
57	A conditional p-hub location problem with attraction functions. Computers and Operations Research, 2009, 36, 3128-3135.	2.4	74
58	The heuristic concentration-integer and its application to a class of location problems. Computers and Operations Research, 2009, 36, 1406-1422.	2.4	7
59	Optimal location of multi-server congestible facilities operating as M/Er/m/N queues. Journal of the Operational Research Society, 2009, 60, 674-684.	2.1	9
60	Employee positioning and workload allocation. Computers and Operations Research, 2008, 35, 513-524.	2.4	51
61	Selecting compact habitat reserves for species with differential habitat size needs. Computers and Operations Research, 2008, 35, 475-487.	2.4	22
62	Facility location for market capture when users rank facilities by shorter travel and waiting times. European Journal of Operational Research, 2008, 191, 32-44.	3.5	80
63	Optimal design of hierarchical networks with free main path extremes. Operations Research Letters, 2008, 36, 366-371.	0.5	8
64	Workload assignment with training, hiring and firing. Engineering Optimization, 2008, 40, 1051-1066.	1.5	5
65	An optimal procedure for solving the hierarchical network design problem. IIE Transactions, 2007, 39, 513-524.	2.1	5
66	PoQBA: A New Path Admission Control for Diffserv Networks. , 2007, , 435-445.		0
67	Teachers' support with ad-hoc collaborative networks. Journal of Computer Assisted Learning, 2005, 21, 171-180.	3.3	27
68	Multiple path routing algorithm for IP networks. Computer Communications, 2005, 28, 829-836.	3.1	8
69	A procedure for the strategic planning of locations, capacities and districting of jails: application to Chile. Journal of the Operational Research Society, 2005, 56, 244-251.	2.1	11
70	Allocating servers to facilities, when demand is elastic to travel and waiting times. RAIRO - Operations Research, 2005, 39, 143-162.	1.0	20
71	Design of Heterogeneous Traffic Networks Using Simulated Annealing Algorithms. Lecture Notes in Computer Science, 2005, , 520-530.	1.0	6
72	New Trends in Public Facility Location Modeling. SSRN Electronic Journal, 2004, , .	0.4	8

#	Article	IF	CITATIONS
73	Finding locations for public service centres that compete with private centres: Effects of congestion*. Papers in Regional Science, 2004, 83, 631-648.	1.0	2
74	Finding locations for public service centres that compete with private centres: Effects of congestion. Papers in Regional Science, 2004, 83, 631-648.	1.0	12
75	Trading off Species Protection and Timber Production in Forests Managed for Multiple Objectives. Environment and Planning B: Planning and Design, 2004, 31, 847-862.	1.7	7
76	Title is missing!. Annals of Operations Research, 2003, 123, 125-141.	2.6	26
77	Location models for airline hubs behaving as M/D/c queues. Computers and Operations Research, 2003, 30, 983-1003.	2.4	178
78	Beyond Nintendo: design and assessment of educational video games for first and second grade students. Computers and Education, 2003, 40, 71-94.	5.1	455
79	Anticoverage Models for Obnoxious Material Transportation. Environment and Planning B: Planning and Design, 2002, 29, 141-150.	1.7	7
80	Location–Allocation of Multiple-Server Service Centers with Constrained Queues or Waiting Times. Annals of Operations Research, 2002, 111, 35-50.	2.6	94
81	Location Problems in the Public Sector. , 2002, , 119-150.		95
82	Hierarchical location–allocation models for congested systems. European Journal of Operational Research, 2001, 135, 195-208.	3.5	89
83	Optimal location of public health centres which provide free and paid services. Journal of the Operational Research Society, 2001, 52, 391-400.	2.1	28
84	Title is missing!. Annals of Operations Research, 2000, 96, 237-243.	2.6	26
85	Hierarchical Location-Allocation Models for Congested Systems. SSRN Electronic Journal, 2000, , .	0.4	4
86	Location Models for Airline Hubs Behaving as M/D/c Queues. SSRN Electronic Journal, 2000, , .	0.4	0
87	Survivable Capacitated Network Design Problem: New Formulation and Lagrangean Relaxation. Journal of the Operational Research Society, 2000, 51, 574.	2.1	0
88	Location of hubs in a competitive environment. European Journal of Operational Research, 1999, 114, 363-371.	3.5	96
89	Probabilistic, Maximal Covering Location—Allocation Models forCongested Systems. Journal of Regional Science, 1998, 38, 401-424.	2.1	154
90	The p-median problem in a changing network: the case of Barcelona. Location Science, 1998, 6, 383-394.	0.2	101

#	Article	IF	CITATIONS
91	The Queueing Maximal availability location problem: A model for the siting of emergency vehicles. European Journal of Operational Research, 1996, 93, 110-120.	3.5	230
92	The queuing probabilistic location set covering problem and some extensions. Socio-Economic Planning Sciences, 1994, 28, 167-178.	2.5	118
93	The capacitated standard response fire protection siting problem: Deterministic and probabilistic models. Annals of Operations Research, 1992, 40, 303-322.	2.6	38
94	A probabilistic fire-protection siting model with joint vehicle reliability requirements. Papers in Regional Science, 1992, 71, 217-241.	1.0	28
95	The maximum-capture hierarchical location problem. European Journal of Operational Research, 1992, 62, 363-371.	3.5	41
96	A PROBABILISTIC FIREâ€PROTECTION SITING MODEL WITH JOINT VEHICLE RELIABILITY REQUIREMENTS. Papers in Regional Science, 1992, 71, 217-241.	1.0	1
97	The Standard Response Fire Protection Siting Problem. Infor, 1991, 29, 116-129.	0.5	17
98	A probabilistic FLEET model with individual vehicle reliability requirements. European Journal of Operational Research, 1991, 53, 93-105.	3.5	44
99	Median Problems in Networks. SSRN Electronic Journal, 0, , .	0.4	2
100	P-Cable Trench Problem with Covering. SSRN Electronic Journal, 0, , .	0.4	1
101	Location of Multiple Server Common Service Centers or Public Facilities for Minimizing General Congestion and Travel Cost Functions. SSRN Electronic Journal, 0, , .	0.4	Ο