Vicente Recarte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4953539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correlation between atomic order and the characteristics of the structural and magnetic transformations in Ni–Mn–Ga shape memory alloys. Acta Materialia, 2007, 55, 3883-3889.	3.8	121
2	Influence of Al and Ni concentration on the Martensitic transformation in Cu-Al-Ni shape-memory alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 2581-2591.	1.1	120
3	Anelastic contributions and transformed volume fraction during thermoelastic martensitic transformations. Physical Review B, 1998, 57, 5684-5692.	1.1	92
4	Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 380-384.	2.6	90
5	Dependence of the martensitic transformation and magnetic transition on the atomic order in Ni–Mn–In metamagnetic shape memory alloys. Acta Materialia, 2012, 60, 1937-1945.	3.8	83
6	Entropy change linked to the martensitic transformation in metamagnetic shape memory alloys. Acta Materialia, 2012, 60, 3168-3175.	3.8	83
7	Entropy change linked to the magnetic field induced martensitic transformation in a Ni–Mn–In–Co shape memory alloy. Journal of Applied Physics, 2010, 107, .	1.1	69
8	Thermodynamics of thermally induced martensitic transformations in Cu–Al–Ni shape memory alloys. Acta Materialia, 2004, 52, 3941-3948.	3.8	65
9	Effect of high-temperature quenching on the magnetostructural transformations and the long-range atomic order of Ni–Mn–Sn and Ni–Mn–Sb metamagnetic shape memory alloys. Acta Materialia, 2013, 61 4676-4682.	,3.8	61
10	Role of magnetism on the martensitic transformation in Ni–Mn-based magnetic shape memory alloys. Acta Materialia, 2012, 60, 459-468.	3.8	60
11	Magnetocaloric effect linked to the martensitic transformation in sputter-deposited Ni–Mn–Ga thin films. Applied Physics Letters, 2009, 95, .	1.5	57
12	Advanced Shape Memory Alloys Processed by Powder Metallurgy. Advanced Engineering Materials, 2000, 2, 49-53.	1.6	55
13	Effect of atomic order on the martensitic and magnetic transformations in Ni–Mn–Ga ferromagnetic shape memory alloys. Journal of Physics Condensed Matter, 2010, 22, 166001.	0.7	49
14	Evolution of martensitic transformation in Cu–Al–Ni shape memory alloys during low-temperature aging. Journal of Materials Research, 1999, 14, 2806-2813.	1.2	48
15	High temperature β phase decomposition process in a Cu–Al–Ni shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 238-242.	2.6	47
16	Magnetocaloric effect in Ni–Fe–Ga shape memory alloys. Applied Physics Letters, 2006, 88, 132503.	1.5	47
17	Determination of the next-nearest neighbor order in Î ² phase in Cu-Al-Ni shape memory alloys. Applied Physics Letters, 2002, 81, 1794-1796.	1.5	46
18	Correlation between composition and phase transformation temperatures in Ni–Mn–Ga–Co ferromagnetic shape memory alloys. Acta Materialia, 2008, 56, 5370-5376.	3.8	45

#	Article	IF	CITATIONS
19	High-temperature magnetic behavior of FeCo-based nanocrystalline alloys. Physical Review B, 2002, 66,	1.1	44
20	Ordering temperatures in Cu–Al–Ni shape memory alloys. Applied Physics Letters, 1997, 70, 3513-3515.	1.5	41
21	Study of the stability and decomposition process of the β phase in Cu–Al–Ni shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 734-737.	2.6	41
22	Study by resonant ultrasound spectroscopy of the elastic constants of the β phase in Cuî—,Alî—,Ni shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 488-491.	2.6	40
23	Tailoring the structural and magnetic properties of Co-Zn nanosized ferrites for hyperthermia applications. Journal of Magnetism and Magnetic Materials, 2018, 465, 211-219.	1.0	37
24	Magnetic field induced martensitic transformation linked to the arrested austenite in a Ni-Mn-In-Co shape memory alloy. Journal of Applied Physics, 2011, 109, 093515.	1.1	36
25	Lattice dynamics and external magnetic-field effects in Ni-Fe-Ga alloys. Physical Review B, 2009, 80, .	1.1	34
26	Magnetic properties of the martensitic phase in Ni-Mn-In-Co metamagnetic shape memory alloys. Applied Physics Letters, 2013, 102, .	1.5	32
27	Entropy change linked to the magnetic field induced Morin transition in Hematite nanoparticles. Applied Physics Letters, 2012, 100, 063102.	1.5	30
28	Quantitative analysis of δ′ precipitation kinetics in Al–Li alloys. Acta Materialia, 2000, 48, 1283-1296.	3.8	28
29	Magnetic properties of Mn-doped finemet nanocrystalline alloy. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1517-1519.	1.0	28
30	Long-Range Atomic Order and Entropy Change at the Martensitic Transformation in a Ni-Mn-In-Co Metamagnetic Shape Memory Alloy. Entropy, 2014, 16, 2756-2767.	1.1	28
31	Internal friction behaviour during martensitic transformation in shape memory alloys processed by powder metallurgy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 492-496.	2.6	26
32	Effect of Mn addition on the structural and magnetic properties of Fe–Pd ferromagnetic shape memory alloys. Acta Materialia, 2009, 57, 4224-4232.	3.8	26
33	Structural and magnetic properties of Cr-doped Ni–Mn–In metamagnetic shape memory alloys. Journal Physics D: Applied Physics, 2011, 44, 395001.	1.3	26
34	Precipitation of the stable phases in Cu-Al-Ni shape memory alloys. Scripta Materialia, 1996, 34, 255-260.	2.6	25
35	Influence of the atomic order on the magnetic characteristics of a Ni–Mn–Ga ferromagnetic shape memory alloy. Journal of Magnetism and Magnetic Materials, 2008, 320, e160-e163.	1.0	25
36	Vibrational and magnetic contributions to the entropy change associated with the martensitic transformation of Ni–Fe–Ga ferromagnetic shape memory alloys. Journal of Physics Condensed Matter, 2010, 22, 416001.	0.7	23

#	Article	IF	CITATIONS
37	Dependence of the relative stability between austenite and martensite phases on the atomic order in a Ni–Mn–In Metamagnetic Shape Memory Alloy. Journal of Alloys and Compounds, 2012, 536, S308-S311.	2.8	23
38	Vibrational and magnetic behavior of transforming and nontransforming Ni-Mn-Ga alloys. Physical Review B, 2007, 76, .	1.1	21
39	Ni–Mn–Ga ferromagnetic shape memory wires. Journal of Applied Physics, 2010, 107, .	1.1	21
40	Enhanced Thermal Conductivity of Nanofluids Diagnosis by Molecular Dynamics Simulations. Journal of Nanoscience and Nanotechnology, 2008, 8, 3710-3718.	0.9	20
41	The effect of annealing on the transformation and the microstructure of Mn1â^'Cr CoGe alloys. Materials Characterization, 2014, 93, 24-31.	1.9	20
42	Giant direct and inverse magnetocaloric effect linked to the same forward martensitic transformation. Scientific Reports, 2017, 7, 13328.	1.6	20
43	Entropy change of martensitic transformation in ferromagnetic shape memory alloys. Acta Materialia, 2013, 61, 1764-1772.	3.8	19
44	119Sn Mössbauer spectroscopy for assessing the local stress and defect state towards the tuning of Ni-Mn-Sn alloys. Applied Physics Letters, 2017, 110, .	1.5	19
45	Temperature dependence of magnetic properties in Fe-Co and Fe-Cr base nanocrystalline alloys. IEEE Transactions on Magnetics, 2003, 39, 3019-3024.	1.2	18
46	Correlation between defects and magneto-structural properties in Ni-Mn-Sn metamagnetic shape memory alloys. Intermetallics, 2018, 94, 133-137.	1.8	18
47	Ordering kinetics in Cu–Al–Ni shape memory alloys. Journal of Applied Physics, 1999, 86, 5467-5473.	1.1	17
48	Analysis of the internal friction spectra during martensitic transformation by a new temperature rate method. Journal of Alloys and Compounds, 2000, 310, 334-338.	2.8	17
49	Reversible and irreversible martensitic transformations in Fe-Pd and Fe-Pd-Co alloys. European Physical Journal: Special Topics, 2008, 158, 107-112.	1.2	17
50	Influence of thermo-mechanical processing on the microstructure of Cu-based shape memory alloys produced by powder metallurgy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 263-268.	2.6	16
51	Influence on the martensitic transformation of the β phase decomposition process in a Cu–Al–Ni shape memory alloy. Journal of Physics Condensed Matter, 2005, 17, 4223-4236.	0.7	16
52	Mechanical spectroscopy in Fe–Al–Si alloys at elevated temperatures. Journal of Alloys and Compounds, 2009, 468, 96-102.	2.8	16
53	High-Field Gradient Permanent Micromagnets for Targeted Drug Delivery with Magnetic Nanoparticles. AIP Conference Proceedings, 2010, , .	0.3	16
54	Effect of magnetic field on the isothermal transformation of a Ni–Mn–In–Co magnetic shape memory alloy. Intermetallics, 2012, 28, 144-148.	1.8	16

4

#	Article	IF	CITATIONS
55	Influence of defects on the irreversible phase transition in Fe–Pd ferromagnetic shape memory alloys. Acta Materialia, 2015, 86, 110-117.	3.8	16
56	Magnetically tunable damping in composites for 4D printing. Composites Science and Technology, 2021, 201, 108538.	3.8	16
57	Determination of the order in γ1 intermetallic phase in Cu–Al–Ni shape memory alloys. Intermetallics, 2003, 11, 927-930.	1.8	15
58	Mechanical spectroscopy in commercial Fe–6 wt.% Si alloys between 400 and 1000 K. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 459-463.	2.6	15
59	Effect of thermal treatments on the martensitic transformation in Co-containing Ni–Mn–Ga alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 293-297.	2.6	15
60	Influence of Long-Range Atomic Order on the Structural and Magnetic Properties of Ni-Mn-Ga Ferromagnetic Shape Memory Alloys. Materials Science Forum, 0, 684, 85-103.	0.3	15
61	Mechanically induced disorder and crystallization process in Ni-Mn-In ball-milled alloys. Journal of Alloys and Compounds, 2016, 689, 983-991.	2.8	15
62	Study of the phases in a copper cathode during an electrodeposition process for obtaining Cu–Li alloys. Materials Research Bulletin, 2000, 35, 1023-1033.	2.7	14
63	Neutron diffraction analysis of the β decomposition process in a texture free Cu–Al–Ni shape memory alloy. Physica B: Condensed Matter, 2004, 350, E1007-E1009.	1.3	14
64	Thermal stability and ordering effects in Ni–Fe–Ga ferromagnetic shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 262-265.	2.6	14
65	Order controlled dislocations and grain boundary mobility in Fe–Al–Cr alloys. Journal of Alloys and Compounds, 2012, 537, 117-122.	2.8	14
66	Direct evidence of the magnetoelastic interaction in Ni2MnGa magnetic shape memory system. Applied Physics Letters, 2013, 102, .	1.5	14
67	Magnetocaloric effect enhancement driven by intrinsic defects in a Ni45Co5Mn35Sn15 alloy. Journal of Alloys and Compounds, 2019, 774, 586-592.	2.8	14
68	Magnetocaloric effect in FeCr soft magnetic nanocrystalline alloys. Journal of Magnetism and Magnetic Materials, 2007, 316, e876-e878.	1.0	13
69	Defect pinning of interface motion in thermoelastic structural transitions of Cu-Al-Ni shape-memory alloy. Physical Review B, 2006, 73, .	1.1	12
70	High temperature atomic rearrangements in melt-spun Ni–Mn–Ga ribbons. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 927-930.	2.6	12
71	Characterisation and modelling of vacancy dynamics in Ni–Mn–Ga ferromagnetic shape memory alloys. Journal of Alloys and Compounds, 2015, 639, 180-186.	2.8	12
72	Outstanding role of the magnetic entropy in arrested austenite in an ordered Ni45Mn36.7In13.3Co5 metamagnetic shape memory alloy. Scripta Materialia, 2019, 168, 91-95.	2.6	12

#	Article	IF	CITATIONS
73	identification of a Ni-Vacancy defect in Ni-Min- <mmitmath xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Z</mml:mi> (<mml:math) etqq:<="" td="" tj=""><td>1 0.7843 1.1</td><td>314 rgBT /C 12</td></mml:math)></mmitmath 	1 0.7843 1 . 1	314 rgBT /C 12
74	Influence of Cr substitution in the magnetoimpedance response of FeSiBCuNb wires. Sensors and Actuators A: Physical, 2003, 106, 230-233.	2.0	11
75	Vacancy dynamic in Ni-Mn-Ga ferromagnetic shape memory alloys. Applied Physics Letters, 2014, 104, .	1.5	11
76	Thermal Degradation of Type I Collagen from Bones. Journal of Renewable Materials, 2016, 4, 251-257.	1.1	11
77	Effect of Co and Mn Doping on the Martensitic Transformations and Magnetic Properties of Fe-Pd Ferromagnetic Shape Memory Alloys. Materials Science Forum, 0, 635, 103-110.	0.3	10
78	Peculiarities of magnetoelastic coupling in Ni–Fe–Ga–Co ferromagnetic martensite. Journal Physics D: Applied Physics, 2010, 43, 175002.	1.3	10
79	Relaxation effects in magnetic-field-induced martensitic transformation of an Ni–Mn–In–Co alloy. Acta Materialia, 2014, 71, 117-125.	3.8	10
80	Effect of Ti addition on the mechanical properties and the magnetocaloric effect of Ni–Mn–In metamagnetic shape memory alloys. Journal Physics D: Applied Physics, 2015, 48, 445006.	1.3	10
81	Characterization of the martensitic transformation in melt-spun NiMnGa ribbons by magnetoinductive effect. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 826-828.	1.0	9
82	Magnetic study of the martensitic transformation in a Fe–Pd alloy. Journal of Magnetism and Magnetic Materials, 2007, 316, e614-e617.	1.0	9
83	Magnetic behavior in Ni–Fe–Ga martensitic phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 318-321.	2.6	9
84	Non-equilibrium martensitic transformation in metamagnetic shape memory alloys. Journal of Alloys and Compounds, 2012, 536, S277-S281.	2.8	9
85	Influence of thermal treatments on the mechanical properties and the martensitic transformation in Fe-Pd-Mn ferromagnetic shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 683, 164-171.	2.6	9
86	Effect of high-energy ball-milling on the magnetostructural properties of a Ni45Co5Mn35Sn15 alloy. Journal of Alloys and Compounds, 2021, 858, 158350.	2.8	9
87	Effect of the decomposition process in the magnetic properties of disordered FePd alloys. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 179-181.	1.0	8
88	Secondary recrystallization in Fe–6.5 wt% Si alloys by internal friction. Journal of Non-Crystalline Solids, 2001, 287, 70-74.	1.5	8
89	Magnetic transition in nanocrystalline soft magnetic alloys analyzed via ac inductive techniques. Physical Review B, 2004, 70, .	1.1	8
90	Mobility of Twin Boundaries in Fe-Pd-Based Ferromagnetic Shape Memory Alloys. Materials Transactions, 2016, 57, 1837-1844.	0.4	8

#	Article	IF	CITATIONS
91	Determination of the vibrational contribution to the entropy change at the martensitic transformation in Ni–Mn–Sn metamagnetic shape memory alloys: a combined approach of time-of-flight neutron spectroscopy and <i>ab initio</i> calculations. Journal of Physics Condensed Matter, 2016, 28, 205402.	0.7	8
92	Computational Modeling and Inelastic Neutron Scattering Contributions to the Study of Methyl-silica Xerogels: A Combined Theoretical and Experimental Analysis. Journal of Physical Chemistry C, 2017, 121, 22836-22845.	1.5	8
93	Experimental Observation of Vacancy-assisted Martensitic Transformation Shift in Ni-Fe-Ga Alloys. Physical Review Letters, 2019, 122, 165701.	2.9	8
94	Routes for enhanced magnetism in Ni-Mn-In metamagnetic shape memory alloys. Scripta Materialia, 2019, 167, 21-25.	2.6	8
95	Correlation between particle size and magnetic properties in soft-milled Ni45Co5Mn34In16 powders. Intermetallics, 2021, 130, 107076.	1.8	8
96	Dilatometric Study of the Precipitation Kinetics in Cu-Al-Ni Shape Memory Alloys. European Physical Journal Special Topics, 1997, 07, C5-329-C5-334.	0.2	7
97	Effect of the oxygen in the evolution of the microstructure in a Cu–18 at.% Li alloy. Materials Letters, 2002, 56, 709-715.	1.3	7
98	Effect of the ordering on the magnetic and magnetoimpedance properties of Fe-6.5% Si alloy. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 88-90.	1.0	7
99	Latent heat contribution to the direct magnetocaloric effect in Ni–Mn–Ga shape memory alloys with coupled martensitic and magnetic transformations. Journal Physics D: Applied Physics, 2016, 49, 205004.	1.3	7
100	Room temperature huge magnetocaloric properties in low hysteresis ordered Cu-doped Ni-Mn-In-Co alloys. Journal of Alloys and Compounds, 2022, 922, 166143.	2.8	7
101	Effect of the metal support interactions on the physicochemical and magnetic properties of Ni catalysts. Journal of Magnetism and Magnetic Materials, 2007, 316, e783-e786.	1.0	6
102	Influence of Structural Defects on the Properties of Metamagnetic Shape Memory Alloys. Metals, 2020, 10, 1131.	1.0	6
103	In situ study of the β phase decomposition process in a Cu-Al-Ni shape memory alloy processed by powder metallurgy. European Physical Journal Special Topics, 2003, 112, 605-609.	0.2	5
104	Obtaining of single phase Cu–Li alloy through an electrodeposition process. Materials Letters, 2005, 59, 349-354.	1.3	5
105	Elastic behavior during early stage of β phase decomposition in a Cu–Al–Ni shape memory alloy. Applied Physics Letters, 2005, 86, 231903.	1.5	5
106	Pre-martensitic phenomena in a near stoichiometric Ni _2 MnGa Polycrystalline alloy. International Journal of Applied Electromagnetics and Mechanics, 2006, 23, 93-98.	0.3	5
107	Temperature dependence of magnetic susceptibility in the vicinity of martensitic transformation in ferromagnetic shape memory alloys. Journal of Physics Condensed Matter, 2010, 22, 316004.	0.7	5
108	Damping Micromechanisms for Bones above Room Temperature. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 0, 19, 87-98.	0.7	5

#	Article	IF	CITATIONS
109	Relation between order degree, damping behaviour and magnetic response in Fe-Si and Fe-Al-Si alloys. Neutron News, 2014, 25, 28-31.	0.1	5
110	Order Evolution in Iron-Based Alloys Viewed through Amplitude Dependent Damping Studies. Materials Transactions, 2015, 56, 182-186.	0.4	5
111	Morin transition in Hematite nanoparticles analyzed by neutron diffraction. Journal of Physics: Conference Series, 2015, 663, 012003.	0.3	5
112	Magnetically driven magnetostructural transformations of shape memory alloys. Journal Physics D: Applied Physics, 2016, 49, 095002.	1.3	5
113	119Sn M¶ssbauer spectroscopy in the study of metamagnetic shape memory alloys. Hyperfine Interactions, 2018, 239, 1.	0.2	5
114	Testing the Applicability of 119Sn Mössbauer Spectroscopy for the Internal Stress Study in Ternary and Co-Doped Ni-Mn-Sn Metamagnetic Alloys. Metals, 2021, 11, 450.	1.0	5
115	Magnetic behavior in commercial iron-silicon alloys controlled by the dislocation dynamics at temperatures below 420ÂK. Journal of Alloys and Compounds, 2021, 856, 157934.	2.8	5
116	Magnetocaloric effect linked to structural and magnetic transitions in Ni–Fe–Ga alloys. Journal of Magnetism and Magnetic Materials, 2007, 310, e999-e1001.	1.0	4
117	Mechanical Spectroscopy and Neutron Diffraction Studies in Fe-Al-Si Alloys. Solid State Phenomena, 2008, 137, 91-98.	0.3	4
118	Temperature and time dependent magnetic phenomena in a nearly stoichiometric Ni2MnGa alloy. Journal of Physics Condensed Matter, 2009, 21, 026020.	0.7	4
119	Ellipsometry applied to phase transitions and relaxation phenomena in Ni2MnGa ferromagnetic shape memory alloy. Applied Physics Letters, 2012, 101, .	1.5	4
120	Low temperature magnetic properties of a Ni50Mn34In16 ball-milled metamagnetic shape memory alloy. Journal of Non-Crystalline Solids, 2016, 447, 16-20.	1.5	4
121	Effect of Ageing on the Martensitic Transformation in a Monocrystalline Cu-Al-Ni Shape Memory Alloy. European Physical Journal Special Topics, 1995, 05, C2-175-C2-180.	0.2	3
122	Analysis of the Intrinsic Anelastic Contribution During the Martensitic Transformation. European Physical Journal Special Topics, 1996, 06, C8-425-C8-428.	0.2	3
123	Internal friction associated with δ′ precipitation in Al–Li alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 249, 241-248.	2.6	3
124	Magnetic relaxation in melt-spun amorphous and nanocrystalline Mn-doped nanocrystalline alloy. Journal of Magnetism and Magnetic Materials, 2007, 310, 2466-2468.	1.0	3
125	Positron Annihilation Spectroscopy Study of NiMnGa Modulated and Non-Modulated Martensitic Phases. Materials Science Forum, 0, 635, 55-61.	0.3	3
126	Transformation behavior of Ni–Mn–Ga in the low-temperature limit. Journal of Physics Condensed Matter, 2012, 24, 276004.	0.7	3

#	Article	IF	CITATIONS
127	Positron Annihilation Spectroscopy Study of Ni-Mn-Ga Ferromagnetic Shape Memory Alloys. Physics Procedia, 2012, 35, 57-62.	1.2	3
128	Low Field Magnetic and Thermal Hysteresis in Antiferromagnetic Dysprosium. Metals, 2017, 7, 215.	1.0	3
129	Deformation induced martensite stabilization in Ni45Mn36.7In13.3Co5 microparticles. Journal of Alloys and Compounds, 2021, 870, 159536.	2.8	3
130	Vacancies mediated ordering in Ni-Mn-Ga shape memory alloys. Scripta Materialia, 2022, 215, 114731.	2.6	3
131	Martensitic Transformation in Cu-Al-Ni Shape Memory Alloys Processed by Powder Metallurgy. European Physical Journal Special Topics, 1995, 05, C8-919-C8-924.	0.2	2
132	Influence of atomic rearrangements on the magnetic properties of a thermally treated disordered Fe21Pd79 alloy. Journal of Non-Crystalline Solids, 2001, 287, 96-99.	1.5	2
133	Systematic study of the reordering process in FeAl alloys by neutron diffraction. Journal of Non-Crystalline Solids, 2003, 329, 39-42.	1.5	2
134	Vibrational behavior of the β phase near martensitic transformation in Cu–Al–Ni shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 243-247.	2.6	2
135	Phase evolution in a Cu–18 at.% Li alloy as a function of temperature under different atmospheres. Powder Technology, 2005, 152, 24-30.	2.1	2
136	Analysis of the strain misfit between matrix and inclusions in a magnetically tunable composite. Mechanics of Materials, 2021, 162, 104045.	1.7	2
137	Advanced Shape Memory Alloys Processed by Powder Metallurgy. Advanced Engineering Materials, 2000, 2, 49-53.	1.6	2
138	Electron microscopy study of microtexture in Cu-Al-Ni shape memory alloys processed by powder metallurgy. European Physical Journal Special Topics, 2003, 112, 615-618.	0.2	2
139	Changes in the crystalline degree in neutron irradiated EPDM viewed through infrared spectroscopy and inelastic neutron scattering. Revista Materia, 2018, 23, .	0.1	2
140	Influencia de la concentración sobre las temperaturas de la transformación martensÃŧica en las aleaciones de base cobre con memoria de forma. Revista De Metalurgia, 1998, 34, 347-350.	0.1	2
141	Martensitic transformation controlled by electromagnetic field: From experimental evidence to wireless actuator applications. Materials and Design, 2022, 219, 110746.	3.3	2
142	Martensitic transformation in Cu-Al-Ni shape memory alloys obtained by ball milling. European Physical Journal Special Topics, 2003, 112, 575-578.	0.2	1
143	Analysis of the nanocrystalline phase in Fe73.5â^'xAxSi13.5B9Cu1Nb3 (A=Cr and Co) alloys. Physica B: Condensed Matter, 2004, 350, E135-E138.	1.3	1
144	Study of the transformation sequence on a high temperature martensitic transformation Ni-Mn-Ga-Co shape memory alloy. Journal of Physics: Conference Series, 2014, 549, 012017.	0.3	1

#	Article	IF	CITATIONS
145	Mobility of dislocations and grain boundaries controlled by the order degree in iron-based alloys. Journal of Physics: Conference Series, 2015, 663, 012013.	0.3	1
146	Piezoelectric composite oscillator for measuring mechanical spectroscopy in small samples that non-match in half wavelength. Measurement Science and Technology, 2016, 27, 035902.	1.4	1
147	Entropy Change Caused by Martensitic Transformations of Ferromagnetic Shape Memory Alloys. Metals, 2017, 7, 509.	1.0	1
148	Influence of defects on the irreversible phase transition in the Fe-Pd doped with Co and Mn. Revista Materia, 2018, 23, .	0.1	1
149	Study of the martensitic transition in Ni-Mn-Sn-Ti ferromagnetic shape memory alloys. Revista Materia, 2018, 23, .	0.1	1
150	Elaboración de aleaciones de Cu-Al-Ni con efecto memoria de forma mediante pulvimetalurgia. Revista De Metalurgia, 1998, 34, 329-332.	0.1	1
151	Caracterización del efecto superelástico de aleaciones pulvimetalúrgicas de Cu-Al-Ni. Revista De Metalurgia, 2001, 37, 199-202.	0.1	1
152	Comportamiento a fractura de aleaciones pulvimetalúrgicas de Cu-Al-Ni con efecto memoria de forma. Revista De Metalurgia, 2001, 37, 194-198.	0.1	1
153	Copper-lithium alloy produced by powder metallurgy procedures and its age-hardening response. International Journal of Materials Research, 2005, 96, 933-939.	0.8	1
154	Elastic and Plastic Strains Misfits During the Reverse Martensitic Transformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 706-722.	1.1	1
155	Thermomechanical properties in CuAlNi shape memory alloys processed by powder metallurgy. , 1996, , .		0
156	Thermal dependence of magnetic properties in Fe-Co and Fe-Cr base nanocrystalline alloys. , 0, , .		0
157	Neutron diffraction analysis of the order in a Cu-Al-Ni shape memory alloy processed by powder metallurgy. European Physical Journal Special Topics, 2003, 112, 611-614.	0.2	0
158	Study of Co-containing Ni-Mn-Ga by positron annihilation. Journal of Physics: Conference Series, 2011, 265, 012015.	0.3	0
159	Defects structure characterization of NiMnGa alloys by PALS. Journal of Physics: Conference Series, 2013, 443, 012039.	0.3	Ο
160	7th Meeting of the Spanish Neutron Scattering Association (SETN). Journal of Physics: Conference Series, 2015, 663, 011001.	0.3	0
161	Evolution of magnetic response as a function of annealing temperature in Fe-based alloys. Revista Materia, 2018, 23,	0.1	0
162	STUDY ON THE MOBILITY OF THE MARTENSITIC INTERPHASES ON THE Cu-Al-Ni SHAPE MEMORY ALLOYS. European Physical Journal Special Topics, 1991, 01, C4-271-C5-276.	0.2	0

#	Article	IF	CITATIONS
163	Incidencia del recocido bajo atmósfera de nitrógeno en el tamaño de grano, textura y pérdidas en el núcleo (10-1000 Hz) en cintas microcristalinas Fe - 6,4 % Si obtenidas por solidificación rápida. Revista De Metalurgia, 1998, 34, 286-290.	0.1	0
164	Magnetic properties of nickel and cobalt catalysts supported on nanoporous oxides. Journal of Nanoscience and Nanotechnology, 2008, 8, 2905-11.	0.9	0