
Joshua R Hendrickson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4953294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tunable angle-independent mid-infrared optical filters using GST-based micro resonator arrays. Optical Materials Express, 2022, 12, 1043.	1.6	7
2	Power-Dependent Investigation of Photo-Response from GeSn-Based p-i-n Photodetector Operating at High Power Density. Materials, 2022, 15, 989.	1.3	11
3	Cavity-enhanced linear dichroism in a van der Waals antiferromagnet. Nature Photonics, 2022, 16, 311-317.	15.6	20
4	High-Density, Localized Quantum Emitters in Strained 2D Semiconductors. ACS Nano, 2022, 16, 9651-9659.	7.3	21
5	Independent measurement of phase and amplitude modulation in phase change material-based devices. Optical Materials Express, 2022, 12, 2899.	1.6	2
6	Pole-based analysis of coupled modes in metal–insulator–metal plasmonic structures. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 776.	0.9	2
7	Tunable Doppler shift using a time-varying epsilon-near-zero thin film near 1550  nm. Optics Letters, 2021, 46, 3444.	1.7	6
8	Self-Hybridized Polaritonic Emission from Layered Perovskites. Nano Letters, 2021, 21, 6245-6252.	4.5	18
9	Wavelength and power dependence on multilevel behavior of phase change materials. AIP Advances, 2021, 11, 085327.	0.6	3
10	Subwavelength Grating Lens With Continuous Phase Shifts. IEEE Photonics Technology Letters, 2021, 33, 844-847.	1.3	1
11	Hyperuniform disordered metal-insulator-metal gap plasmon metasurface near perfect light absorber. Optical Materials Express, 2021, 11, 4083.	1.6	3
12	Manipulation of Ultrafast Pulses Using Epsilon-Near-Zero Based Plasmonic Nonlinear Metasurface. , 2021, , .		0
13	Gap-Plasmon-Enhanced Second-Harmonic Generation in Epsilon-Near-Zero Nanolayers. ACS Photonics, 2020, 7, 174-179.	3.2	23
14	Tunable indium tin oxide for metamaterial perfect absorbers and nonlinear devices. MRS Communications, 2020, 10, 573-578.	0.8	7
15	Tungsten-doped Ge2Sb2Te5 phase change material for high-speed optical switching devices. Applied Physics Letters, 2020, 116, .	1.5	16
16	Planar GeSn photodiode for high-detectivity photodetection at 1550 nm. Applied Physics Letters, 2020, 117, .	1.5	21
17	Phase Change Dynamics and Two-Dimensional 4-Bit Memory in Ge ₂ Sb ₂ Te ₅ via Telecom-Band Encoding. ACS Photonics, 2020, 7, 480-487.	3.2	25
18	Optical dielectric constants of single crystalline silver films in the long wavelength range. Optical Materials Express, 2020, 10, 693.	1.6	13

Joshua R Hendrickson

#	Article	IF	CITATIONS
19	Epsilon-near-zero thin-film metamaterials for wideband near-perfect light absorption. Optical Materials Express, 2020, 10, 2439.	1.6	15
20	Edge Doping Effect to the Surface Plasmon Resonances in Graphene Nanoribbons. Journal of Physical Chemistry C, 2019, 123, 19820-19827.	1.5	8
21	Controlling three-dimensional optical fields via inverse Mie scattering. Science Advances, 2019, 5, eaax4769.	4.7	44
22	Ultra‣ong Lifetimes of Single Quantum Emitters in Monolayer WSe ₂ /hBN Heterostructures. Advanced Quantum Technologies, 2019, 2, 1900022.	1.8	13
23	Quantum Calligraphy: Writing Single-Photon Emitters in a Two-Dimensional Materials Platform. ACS Nano, 2019, 13, 904-912.	7.3	80
24	Angle- and polarization-independent mid-infrared narrowband optical filters using dense arrays of resonant cavities. Optics Express, 2019, 27, 37481.	1.7	9
25	Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption. ACS Photonics, 2018, 5, 776-781.	3.2	78
26	Improving the performance of Ge2Sb2Te5 materials via nickel doping: Towards RF-compatible phase-change devices. Applied Physics Letters, 2018, 113, 171903.	1.5	34
27	GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Optical Materials Express, 2018, 8, 1551.	1.6	166
28	Super-Absorbing Metamaterials Using Epsilon-Near-Zero Plasma Resonance. , 2018, , .		0
29	Room-temperature 2- <i>μ</i> m GeSn P-I-N homojunction light-emitting diode for inplane coupling to group-IV waveguides. Applied Physics Letters, 2017, 111, .	1.5	15
30	Ge_0975Sn_0025 320  —  256 imager chip for 16–19  μm infrared vision. Appl	ied201ptics,	2046, 55, 10

31	Localized and nonlocalized plasmon resonance enhanced light absorption in metal-insulator-metal nanostructures. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1686.	0.9	21
32	Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 656.	0.9	124
33	Wideband perfect light absorber at midwave infrared using multiplexed metal structures. Optics Letters, 2012, 37, 371.	1.7	219