List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4953221/publications.pdf Version: 2024-02-01

ΚΑΤΩΙΗΙΡΟ ΜΑΕΠΑ

#	Article	IF	CITATIONS
1	Helical Polymers: Synthesis, Structures, and Functions. Chemical Reviews, 2009, 109, 6102-6211.	23.0	1,481
2	Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chemical Reviews, 2016, 116, 13752-13990.	23.0	1,444
3	Memory of macromolecular helicity assisted by interaction with achiral small molecules. Nature, 1999, 399, 449-451.	13.7	752
4	Detection and Amplification of Chirality by Helical Polymers. Chemistry - A European Journal, 2004, 10, 42-51.	1.7	535
5	Single- and Double-Stranded Helical Polymers: Synthesis, Structures, and Functions. Accounts of Chemical Research, 2008, 41, 1166-1180.	7.6	445
6	Chirality-Responsive Helical Polymers. Macromolecules, 2008, 41, 3-12.	2.2	417
7	Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nature Chemistry, 2014, 6, 429-434.	6.6	326
8	Dynamic Helical Structures: Detection and Amplification of Chirality. , 0, , 47-88.		223
9	Switching of a Macromolecular Helicity for Visual Distinction of Molecular Recognition Events. Journal of the American Chemical Society, 2001, 123, 8159-8160.	6.6	193
10	Switching of Macromolecular Helicity of Optically Active Poly(phenylacetylene)s Bearing Cyclodextrin Pendants Induced by Various External Stimuli. Journal of the American Chemical Society, 2006, 128, 7639-7650.	6.6	182
11	Mechanism of Helix Induction on a Stereoregular Poly((4-carboxyphenyl)acetylene) with Chiral Amines and Memory of the Macromolecular Helicity Assisted by Interaction with Achiral Amines. Journal of the American Chemical Society, 2004, 126, 4329-4342.	6.6	171
12	Dual Memory of Enantiomeric Helices in a Polyacetylene Induced by a Single Enantiomer. Journal of the American Chemical Society, 2005, 127, 5018-5019.	6.6	123
13	A Helical Polyelectrolyte Induced by Specific Interactions with Biomolecules in Water. Journal of the American Chemical Society, 2001, 123, 7441-7442.	6.6	121
14	An Unprecedented Memory of Macromolecular Helicity Induced in an Achiral Polyisocyanide in Water. Journal of the American Chemical Society, 2004, 126, 732-733.	6.6	119
15	Mechanism of Helix Induction in Poly(4-carboxyphenyl isocyanide) with Chiral Amines and Memory of the Macromolecular Helicity and Its Helical Structures. Journal of the American Chemical Society, 2009, 131, 10719-10732.	6.6	104
16	Enantioselective Esterification of Prochiral Phosphonate Pendants of a Polyphenylacetylene Assisted by Macromolecular Helicity:Â Storage of a Dynamic Macromolecular Helicity Memory. Journal of the American Chemical Society, 2005, 127, 2960-2965.	6.6	103
17	Poly(phenylacetylene)s Bearing a Peptide Pendant: Helical Conformational Changes of the Polymer Backbone Stimulated by the Pendant Conformational Change. Chemistry - A European Journal, 2004, 10, 4000-4010.	1.7	101
18	Helix-Sense Inversion of Poly(phenylacetylene) Derivatives Bearing an Optically Active Substituent Induced by External Chiral and Achiral Stimuli. Macromolecules, 2003, 36, 1480-1486.	2.2	96

KATSUHIRO MAEDA

#	Article	IF	CITATIONS
19	Direct Detection of Hardly Detectable Hidden Chirality of Hydrocarbons and Deuterated Isotopomers by a Helical Polyacetylene through Chiral Amplification and Memory. Journal of the American Chemical Society, 2018, 140, 3270-3276.	6.6	96
20	Synthesis and Macromolecular Helicity Induction of a Stereoregular Polyacetylene Bearing a Carboxy Group with Natural Amino Acids in Water. Macromolecules, 2000, 33, 4616-4618.	2.2	95
21	Stereospecific Polymerization of Propiolic Acid with Rhodium Complexes in the Presence of Bases and Helix Induction on the Polymer in Water. Macromolecules, 2001, 34, 1160-1164.	2.2	93
22	Unexpectedly Strong Chiral Amplification of Chiral/Achiral and Chiral/Chiral Copolymers of Biphenylylacetylenes and Further Enhancement/Inversion and Memory of the Macromolecular Helicity. Journal of the American Chemical Society, 2019, 141, 7605-7614.	6.6	92
23	Macromolecular Helicity Induction on a Poly(phenylacetylene) with C2-Symmetric Chiral [60]Fullerene-Bisadducts. Journal of the American Chemical Society, 2004, 126, 11711-11717.	6.6	88
24	Temperature Dependence of Helical Structures of Poly(phenylacetylene) Derivatives Bearing an Optically Active Substituent. Chemistry - A European Journal, 2002, 8, 5112-5120.	1.7	84
25	Helix-Sense-Selective Synthesis of Right- and Left-Handed Helical Luminescent Poly(diphenylacetylene)s with Memory of the Macromolecular Helicity and Their Helical Structures. Journal of the American Chemical Society, 2020, 142, 7668-7682.	6.6	83
26	Radical <i>trans</i> â€Hydroboration of Alkynes with Nâ€Heterocyclic Carbene Boranes. Angewandte Chemie - International Edition, 2018, 57, 9485-9490.	7.2	82
27	Three-State Switchable Chiral Stationary Phase Based on Helicity Control of an Optically Active Poly(phenylacetylene) Derivative by Using Metal Cations in the Solid State. Journal of the American Chemical Society, 2019, 141, 8592-8598.	6.6	82
28	Helical Polyacetylenes Induced via Noncovalent Chiral Interactions and Their Applications as Chiral Materials. Topics in Current Chemistry, 2017, 375, 72.	3.0	79
29	Helicity Induction and Conformational Dynamics of Poly(bis(4-carboxyphenoxy)phosphazene) with Optically Active Amines. Journal of the American Chemical Society, 2000, 122, 7813-7814.	6.6	77
30	Synthesis of functional poly(phenyl isocyanide)s with macromolecular helicity memory and their use as asymmetric organocatalysts. Chirality, 2009, 21, 44-50.	1.3	76
31	Hierarchical Amplification of Macromolecular Helicity in a Lyotropic Liquid Crystalline Charged Poly(phenylacetylene) by Nonracemic Dopants in Water and Its Helical Structure. Macromolecules, 2006, 39, 5371-5380.	2.2	72
32	Unusual Conformational Change of Optically Active Poly(3-((S)-sec-butoxycarbonyl)phenyl) Tj ETQq0 0 0 rgBT /(Dverlock 1 2.2	0 Tf 50 222 1
33	Helicity Induction on Poly(phenylacetylene)s Bearing Phosphonic Acid Pendants with Chiral Amines and Memory of the Macromolecular Helicity Assisted by Interaction with Achiral Amines in Dimethyl Sulfoxide. Macromolecules, 2004, 37, 5495-5503.	2.2	68
34	Nonracemic Dopant-Mediated Hierarchical Amplification of Macromolecular Helicity in a Charged Polyacetylene Leading to a Cholesteric Liquid Crystal in Water. Journal of the American Chemical Society, 2004, 126, 16284-16285.	6.6	64
35	Spin Filtering Along Chiral Polymers. Angewandte Chemie - International Edition, 2020, 59, 14671-14676.	7.2	64

Synthesis and Conformation of Optically Active Poly(phenyl isocyanate)s Bearing an ((S)-(α-Methylbenzyl)carbamoyl) Group. Macromolecules, 1998, 31, 1046-1052.

2.2 63

#	Article	IF	CITATIONS
37	Synthesis of Optically Active Helical Poly(phenylacetylene)s Bearing Oligopeptide Pendants and Their Use as Polymeric Organocatalysts for Asymmetric Epoxidation. Macromolecules, 2007, 40, 6783-6785.	2.2	63
38	Hierarchical Amplification of Macromolecular Helicity of Dynamic Helical Poly(phenylacetylene)s Composed of Chiral and Achiral Phenylacetylenes in Dilute Solution, Liquid Crystal, and Two-Dimensional Crystal. Journal of the American Chemical Society, 2011, 133, 108-114.	6.6	63
39	Efficient and rapid direct transesterification reactions of cellulose with isopropenyl acetate in ionic liquids. RSC Advances, 2015, 5, 72071-72074.	1.7	62
40	Helical Polymers with Dynamic and Static Macromolecular Helicity Memory: The Power of Helicity Memory for Helical Polymer Synthesis and Applications. Bulletin of the Chemical Society of Japan, 2021, 94, 2637-2661.	2.0	61
41	Macromolecular Helicity Induction in a Cationic Polyacetylene Assisted by an Anionic Polyisocyanide with Helicity Memory in Water:Â Replication of Macromolecular Helicity. Journal of the American Chemical Society, 2004, 126, 15161-15166.	6.6	59
42	Helicity Induction in Charged Poly(phenylacetylene)s Bearing Various Acidic Functional Groups in Water and Its Mechanism. Macromolecules, 2005, 38, 8625-8633.	2.2	57
43	Circularly Polarized Luminescent Triptycene-Based Polymers. ACS Macro Letters, 2018, 7, 364-369.	2.3	54
44	Highly selective and straightforward recovery of gold and platinum from acidic waste effluents using cellulose-based bio-adsorbent. Journal of Hazardous Materials, 2021, 410, 124569.	6.5	54
45	Helical polymer brushes with a preferred-handed helix-sense triggered by a terminal optically active group in the pendant. Chemical Communications, 2012, 48, 3342.	2.2	53
46	Dual Memory of Enantiomeric Helices in Poly(phenylacetylene)s Induced by a Single Enantiomer through Helix Inversion and Dual Storage of the Enantiomeric Helicity Memories. Macromolecules, 2015, 48, 4281-4293.	2.2	52
47	Helicity Induction and Chiral Amplification in a Poly(phenylacetylene) BearingN,N-Diisopropylaminomethyl Groups with Chiral Acids in Water. Macromolecules, 2005, 38, 5444-5451.	2.2	50
48	Chiral Amplification in Polymer Brushes Consisting of Dynamic Helical Polymer Chains through the Long-Range Communication of Stereochemical Information. Macromolecules, 2014, 47, 6540-6546.	2.2	48
49	Chiroptical Properties of Oligomers of m-Methylphenyl Isocyanate Bearing an Optically Active End-Group. Polymer Journal, 1995, 27, 141-146.	1.3	45
50	Helicity induction and memory effect in poly(biphenylylacetylene)s bearing various functional groups and their use as switchable chiral stationary phases for HPLC. Polymer Chemistry, 2019, 10, 6260-6268.	1.9	45
51	Emergence of Highly Enantioselective Catalytic Activity in a Helical Polymer Mediated by Deracemization of Racemic Pendants. Journal of the American Chemical Society, 2021, 143, 12725-12735.	6.6	45
52	Helicity induction on a poly(phenylacetylene) bearing a phosphonate residue by chiral dendrons. Journal of Polymer Science Part A, 2004, 42, 4580-4586.	2.5	44
53	Helical springs as a color indicator for determining chirality and enantiomeric excess. Science Advances, 2021, 7, .	4.7	44
54	A mechanistic insight into the organocatalytic properties of imidazolium-based ionic liquids and a positive co-solvent effect on cellulose modification reactions in an ionic liquid. RSC Advances, 2017, 7, 9423-9430.	1.7	41

#	Article	IF	CITATIONS
55	Helical Structure of Oligo- and Poly(m-substituted phenyl isocyanate)s Bearing an Optically Active End-Group. Polymer Journal, 1998, 30, 100-105.	1.3	40
56	Chiral Recognition Ability of an Optically Active Poly(diphenylacetylene) as a Chiral Stationary Phase for HPLC. Chemistry Letters, 2016, 45, 1063-1065.	0.7	39
57	Helix formation of poly(phenylacetylene) derivatives bearing amino groups at the meta position induced by optically active carboxylic acids. Journal of Polymer Science Part A, 2001, 39, 3180-3189.	2.5	37
58	Esters as Radical Acceptors: βâ€NHCâ€Borylalkenyl Radicals Induce Lactonization by Câ^'C Bond Formation/Cleavage on Esters. Angewandte Chemie - International Edition, 2019, 58, 6357-6361.	7.2	37
59	Selective recovery of silver and palladium from acidic waste solutions using dithiocarbamate-functionalized cellulose. Chemical Engineering Journal, 2021, 407, 127225.	6.6	36
60	Racemic Monomerâ€Based Oneâ€Handed Helical Polymer Recognizes Enantiomers through Autoâ€Evolution of Its Helical Handedness Excess. Angewandte Chemie - International Edition, 2021, 60, 4625-4632.	7.2	36
61	Chiral triptycene-pyrene π-conjugated chromophores with circularly polarized luminescence. Organic and Biomolecular Chemistry, 2017, 15, 8440-8447.	1.5	35
62	Synthesis of Optically Active Poly(diphenylacetylene)s Using Polymer Reactions and an Evaluation of Their Chiral Recognition Abilities as Chiral Stationary Phases for HPLC. Molecules, 2016, 21, 1487.	1.7	34
63	Chiral/Achiral Copolymers of Biphenylylacetylenes Bearing Various Substituents: Chiral Amplification through Copolymerization, Followed by Enhancement/Inversion and Memory of the Macromolecular Helicity. Macromolecules, 2020, 53, 973-981.	2.2	34
64	Facile and Versatile Synthesis of Endâ€Functionalized Poly(phenylacetylene)s: A Multicomponent Catalytic System for Well ontrolled Living Polymerization of Phenylacetylenes. Angewandte Chemie - International Edition, 2020, 59, 8670-8680.	7.2	33
65	Helically Folding Polymers. , 0, , 331-366.		32
66	Syntheses and Chiroptical Properties of Optically Active Helical Poly(phenylacetylene)s Bearing [60]Fullerene Pendants. Macromolecules, 2007, 40, 9244-9251.	2.2	31
67	Helicity Induction and Its Static Memory of Poly(biphenylylacetylene)s Bearing Pyridine <i>N</i> â€Oxide Groups and Their Use as Asymmetric Organocatalysts. Journal of Polymer Science Part A, 2019, 57, 2481-2490.	2.5	31
68	Helicity Induction in a Poly(4-carboxyphenyl isocyanide) with Chiral Amines and Memory of the Macromolecular Helicity in Aqueous Solution. Macromolecules, 2006, 39, 6003-6008.	2.2	30
69	Dithiocarbamate-modified cellulose resins: A novel adsorbent for selective removal of arsenite from aqueous media. Journal of Hazardous Materials, 2019, 380, 120816.	6.5	30
70	Chirality sensing of various biomolecules with helical poly(phenylacetylene)s bearing acidic functional groups in water. Journal of Polymer Science Part A, 2006, 44, 5039-5048.	2.5	29
71	Solvent-induced switching of the macromolecular helicity of poly[(4-carboxyphenyl)acetylene] induced by a single chiral amino alcohol. Journal of Polymer Science Part A, 2003, 41, 3625-3631.	2.5	28
72	Helicity Induction on a Poly(phenylacetylene) Derivative Bearing a Sulfonic Acid Pendant with Chiral Amines and Memory of the Macromolecular Helicity in Dimethyl Sulfoxide. Polymer Journal, 2006, 38, 912-919	1.3	27

#	Article	IF	CITATIONS
73	Cellulose derivatives bearing pyrene-based π-conjugated pendants with circularly polarized luminescence in molecularly dispersed state. Polymer, 2017, 117, 220-224.	1.8	27
74	Disclosing chirality in consecutive supramolecular polymerizations: chiral induction by light in <i>N</i> -annulated perylenetetracarboxamides. Chemical Communications, 2020, 56, 2244-2247.	2.2	27
75	A helical array of pendant fullerenes on a helical poly(phenylacetylene) induced by non-covalent chiral interactionsElectronic Supplementary Information (ESI) available: Full synthetic and analytical details and UV-vis, CD, IR and NMR spectra of the copolymers. See http://www.rsc.org/suppdata/cc/b3/b312511d/. Chemical Communications, 2004, . 646.	2.2	26
76	Synthesis and chiroptical properties of a π-conjugated polymer containing glucose-linked biphenyl units in the main chain capable of folding into a helical conformation. Polymer Chemistry, 2016, 7, 7522-7529.	1.9	26
77	Chromatographic enantioseparation by poly(biphenylylacetylene) derivatives with memory of both axial chirality and macromolecular helicity. Chirality, 2017, 29, 120-129.	1.3	26
78	Radical <i>trans</i> â€Hydroboration of Alkynes with Nâ€Heterocyclic Carbene Boranes. Angewandte Chemie, 2018, 130, 9629-9634.	1.6	26
79	Catalytic one-handed helix-induction and memory of amphiphilic poly(biphenylylacetylene)s in water. Giant, 2020, 2, 100016.	2.5	26
80	Effect of Polyelectrolyte Function on Helical Structures of Optically Active Poly(phenylacetylene) Derivatives Bearing Basic or Acidic Functional Pendant Groups. Macromolecules, 2011, 44, 8343-8349.	2.2	25
81	Macromolecular helicity control of poly(phenyl isocyanate)s with a single stimuli-responsive chiral switch. Chemical Communications, 2019, 55, 7906-7909.	2.2	25
82	Temperatureâ€Induced Chiroptical Changes in a Helical Poly(phenylacetylene) Bearing <i>N</i> , <i>N</i> â€Diisopropylaminomethyl Groups with Chiral Acids in Water. Chemistry - an Asian Journal, 2007, 2, 1314-1321.	1.7	24
83	Enantioselective Adsorption of Chiral Amines on an Induced Helical Poly(bis(4-carboxyphenoxy)phosphazene): Chiral Filter Effect. Macromolecules, 2011, 44, 2457-2464.	2.2	24
84	Static Memory of Enantiomeric Helices Induced in a Poly(biphenylylacetylene) by a Single Enantiomer Assisted by Temperature- and Solvent-Driven Helix Inversion. Macromolecules, 2017, 50, 7801-7806.	2.2	24
85	Amplification of macromolecular helicity of dynamic helical poly(phenylacetylene)s bearing non-racemic alanine pendants in dilute solution, liquid crystal and two-dimensional crystal. Polymer Journal, 2012, 44, 42-50.	1.3	23
86	Synthesis and Chiral Recognition of Helical Polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 1771-1783.	1.2	22
87	Molecular Recognition of Nucleosides and Nucleotides Based on Circular Dichroism Induced by Helix Formation of Poly[(4-dihydroxyborophenyl)acetylene]. Chemistry Letters, 2001, 30, 58-59.	0.7	22
88	Synthesis of polysaccharide derivatives bearing pyridine N-oxide groups and their use as asymmetric organocatalysts. Reactive and Functional Polymers, 2011, 71, 1055-1058.	2.0	22
89	Macromolecular Helicity Induction and Memory in a Poly(biphenylylacetylene) Bearing an Ester Group and Its Application to a Chiral Stationary Phase for High-performance Liquid Chromatography. Chemistry Letters, 2015, 44, 946-948.	0.7	21
90	Chiral stationary phases consisting of π-conjugated polymers bearing glucose-linked biphenyl units: reversible switching of resolution abilities based on a coil-to-helix transition. Polymer Chemistry, 2017, 8, 4190-4198.	1.9	21

#	Article	IF	CITATIONS
91	Comparative evaluation of dithiocarbamate-modified cellulose and commercial resins for recovery of precious metals from aqueous matrices. Journal of Hazardous Materials, 2021, 418, 126308.	6.5	21
92	Helicity Induction and Memory of the Macromolecular Helicity in a Polyacetylene Bearing a Biphenyl Pendant. Chemistry - an Asian Journal, 2008, 3, 614-624.	1.7	20
93	Revisiting Polyfluoroarenes as Radical Acceptors: Radical C–F Bond Borylation of Polyfluoroarenes with N-Heterocyclic Carbene Boranes and Synthesis of Borane-Containing Liquid Crystals. Organic Letters, 2020, 22, 2054-2059.	2.4	19
94	The Thermal Rearrangement of an NHC‣igated 3â€Benzoborepin to an NHCâ€Boranorcaradiene. Angewandte Chemie - International Edition, 2020, 59, 903-909.	7.2	18
95	Synthesis of Stereoregular Telechelic Poly(phenylacetylene)s: Facile Terminal Chain-End Functionalization of Poly(phenylacetylene)s by Terminative Coupling with Acrylates and Acrylamides in Rhodium-Catalyzed Living Polymerization of Phenylacetylenes. Journal of the American Chemical Society, 2021, 143, 3604-3612.	6.6	18
96	Radical <i>trans</i> -Hydroboration of Substituted 1,3-Diynes with an <i>N</i> -Heterocyclic Carbene Borane. Organic Letters, 2021, 23, 1071-1075.	2.4	18
97	Revisiting the Polymerization of Diphenylacetylenes with Tungsten(VI) Chloride and Tetraphenyltin: An Alternative Mechanism by a Metathesis Catalytic System. Angewandte Chemie - International Edition, 2020, 59, 14772-14780.	7.2	17
98	Synthesis and structure of poly(phenyl isocyanate)s bearing an optically active alkoxyl group. Journal of Physical Organic Chemistry, 2000, 13, 361-367.	0.9	16
99	Esters as Radical Acceptors: βâ€NHCâ€Borylalkenyl Radicals Induce Lactonization by Câ^'C Bond Formation/Cleavage on Esters. Angewandte Chemie, 2019, 131, 6423-6427.	1.6	16
100	Understanding the Polymerization of Diphenylacetylenes with Tantalum(V) Chloride and Cocatalysts: Production of Cyclic Poly(diphenylacetylene)s by Low-Valent Tantalum Species Generated in Situ. Journal of the American Chemical Society, 2021, 143, 16136-16146.	6.6	16
101	Synthesis of a poly(diphenylacetylene) bearing optically active anilide pendants and its application to a chiral stationary phase for high-performance liquid chromatography. Journal of Chromatography A, 2020, 1622, 461173.	1.8	15
102	Macromolecular helicity inversion of poly(phenylacetylene) derivatives induced by various external stimuli. Macromolecular Symposia, 2003, 201, 135-142.	0.4	14
103	Layer-by-layer assembly of charged poly(phenylacetylene)s with induced macromolecular helicity. Chemical Communications, 2005, , 4152.	2.2	13
104	Optically active distorted cyclic triptycenes: chiral stationary phases for HPLC. RSC Advances, 2018, 8, 20483-20487.	1.7	13
105	A Helical Array of Pendant Fullerenes on an Optically Active Polyphenylacetylene. Angewandte Chemie, 2002, 114, 3754-3756.	1.6	12
106	Helicity Induction on Macromolecules Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2002, 60, 878-890.	0.0	12
107	Solventâ€dependent helix inversion in optically active poly(diphenylacetylene)s and their chiral recognition abilities as chiral stationary phases for highâ€performance liquid chromatography. Chirality, 2022, 34, 597-608.	1.3	12
108	Convenient synthesis of fully and partially deuterated stereoregular poly(phenylacetylene)s bearing a carboxy pendant and helicity induction on the polymers with chiral amines and its memory. Journal of Polymer Science Part A, 2004, 42, 4711-4722.	2.5	11

#	Article	IF	CITATIONS
109	Facile and Versatile Synthesis of Endâ€Functionalized Poly(phenylacetylene)s: A Multicomponent Catalytic System for Wellâ€Controlled Living Polymerization of Phenylacetylenes. Angewandte Chemie, 2020, 132, 8748-8758.	1.6	10
110	Rhodium(I) Complexes Bearing an Arylâ€&ubstituted 1,3,5â€Hexatriene Chain: Catalysts for Living Polymerization of Phenylacetylene and Potential Helical Chirality of 1,3,5â€Hexatrienes. Angewandte Chemie - International Edition, 2021, 60, 22201-22206.	7.2	10
111	Visualisation of helical structures of poly(diphenylacetylene)s bearing chiral amide pendants by atomic force microscopy. Chemical Communications, 2021, 57, 12266-12269.	2.2	10
112	Synthesis of Thieno[3,4- <i>b</i>]thiophene-Based Donor Molecules with Phenyl Ester Pendants for Organic Solar Cells: Control of Photovoltaic Properties via Single Substituent Replacement. ChemistrySelect, 2016, 1, 703-709.	0.7	9
113	Speciation analysis of inorganic selenium in wastewater using a highly selective cellulose-based adsorbent via liquid electrode plasma optical emission spectrometry. Journal of Hazardous Materials, 2022, 424, 127250.	6.5	9
114	Cu(II)-assisted Helicity Induction on a Poly(phenylacetylene) Derivative Bearing an Achiral Glycine Residue with Amino Acids in Water. Chemistry Letters, 2003, 32, 1086-1087.	0.7	8
115	Helix induction in an optically inactive poly[(4-carboxyphenyl)acetylene] film with chiral amines. Mendeleev Communications, 2004, 14, 231-233.	0.6	8
116	The Thermal Rearrangement of an NHC‣igated 3â€Benzoborepin to an NHCâ€Boranorcaradiene. Angewandte Chemie, 2020, 132, 913-919.	1.6	8
117	Spin Filtering Along Chiral Polymers. Angewandte Chemie, 2020, 132, 14779-14784.	1.6	8
118	Wellâ€Controlled Living Polymerization of Phenylacetylenes in Water: Synthesis of Waterâ€Soluble Stereoregular Telechelic Poly(phenylacetylene)s. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
119	Application of Soluble Poly(phenylenevinylene) Wrapped in Amylose to Organic Light-Emitting Diodes. Molecular Crystals and Liquid Crystals, 2007, 471, 29-38.	0.4	7
120	Chemical Modification of a Luminescent Poly(phenylenevinylene)-Amylose Composite. Macromolecules, 2008, 41, 5065-5069.	2.2	7
121	Dithiocarbamate-modified cellulose-based sorbents with high storage stability for selective removal of arsenite and hazardous heavy metals. RSC Advances, 2020, 10, 30238-30244.	1.7	7
122	Racemic Monomerâ€Based Oneâ€Handed Helical Polymer Recognizes Enantiomers through Autoâ€Evolution of Its Helical Handedness Excess. Angewandte Chemie, 2021, 133, 4675-4682.	1.6	7
123	Enantioseparation on helical poly(diphenylacetylene)s bearing optically-active pendants: Effects of differences in higher-order structures of kinetically-trapped and thermodynamically-stable states on chiral recognition ability. Journal of Chromatography A, 2022, 1675, 463164.	1.8	6
124	Rhodium(I) Complexes Bearing an Arylâ€Substituted 1,3,5â€Hexatriene Chain: Catalysts for Living Polymerization of Phenylacetylene and Potential Helical Chirality of 1,3,5â€Hexatrienes. Angewandte Chemie, 2021, 133, 22375-22380.	1.6	5
125	Wellâ€Controlled Living Polymerization of <i>N</i> â€Propargylamides and Their Derivatives by Rhodium Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
126	Helicity Induction on a Poly (phenylacetylene) Bearing Carboxy Groups at the Meta-Position. Kobunshi Ronbunshu, 2006, 63, 325-330.	0.2	4

#	Article	IF	CITATIONS
127	Influence of 4â€fluorophenyl pendants in thieno[3,4â€b]thiopheneâ€benzo[1,2â€b:4,5â€bâ€2]dithiopheneâ€bas polymers on the performance of photovoltaics. Journal of Polymer Science Part A, 2015, 53, 1586-1593.	sed 2.5	3
128	Revisiting the Polymerization of Diphenylacetylenes with Tungsten(VI) Chloride and Tetraphenyltin: An Alternative Mechanism by a Metathesis Catalytic System. Angewandte Chemie, 2020, 132, 14882-14890.	1.6	3
129	Helicity Induction on Optically Inactive Polyacetylenes and Polyphosphazenes. ACS Symposium Series, 2002, , 41-53.	0.5	2
130	Helical Polyacetylenes Induced via Noncovalent Chiral Interactions and Their Applications as Chiral Materials. Topics in Current Chemistry Collections, 2017, , 1-31.	0.2	2
131	Synthesis of Pentaarylcyclobutenylrhodium(I) Complexes and Their Reactivity and Initiation Mechanism in Polymerization of Monosubstituted Acetylenes. Organometallics, 2022, 41, 472-479.	1.1	1
132	Wellâ€Controlled Living Polymerization of <i>N</i> â€Propargylamides and Their Derivatives by Rhodium Catalysis. Angewandte Chemie, 2022, 134, .	1.6	1
133	Frontispiece: Revisiting the Polymerization of Diphenylacetylenes with Tungsten(VI) Chloride and Tetraphenyltin: An Alternative Mechanism by a Metathesis Catalytic System. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0
134	Frontispiz: Revisiting the Polymerization of Diphenylacetylenes with Tungsten(VI) Chloride and Tetraphenyltin: An Alternative Mechanism by a Metathesis Catalytic System. Angewandte Chemie, 2020, 132, .	1.6	0
135	Frontispiece: Racemic Monomerâ€Based Oneâ€Handed Helical Polymer Recognizes Enantiomers through Autoâ€Evolution of Its Helical Handedness Excess. Angewandte Chemie - International Edition, 2021, 60, .	7.2	0
136	Frontispiz: Racemic Monomerâ€Based Oneâ€Handed Helical Polymer Recognizes Enantiomers through Autoâ€Evolution of Its Helical Handedness Excess. Angewandte Chemie, 2021, 133, .	1.6	0
137	Editors' note. Chirality, 2022, 34, 699-700.	1.3	0
138	Titelbild: Wellâ€Controlled Living Polymerization of <i>N</i> â€Propargylamides and Their Derivatives by Rhodium Catalysis (Angew. Chem. 17/2022). Angewandte Chemie, 2022, 134, .	1.6	0
139	Well ontrolled Living Polymerization of Phenylacetylenes in Water: Synthesis of Waterâ€5oluble Stereoregular Telechelic Poly(phenylacetylene)s. Angewandte Chemie, 2022, 134, .	1.6	0
140	Frontispiece: Well ontrolled Living Polymerization of Phenylacetylenes in Water: Synthesis of Waterâ€Soluble Stereoregular Telechelic Poly(phenylacetylene)s. Angewandte Chemie - International Edition, 2022, 61, .	7.2	0
141	Frontispiz: Wellâ€Controlled Living Polymerization of Phenylacetylenes in Water: Synthesis of Waterâ€Soluble Stereoregular Telechelic Poly(phenylacetylene)s. Angewandte Chemie, 2022, 134, .	1.6	0