Connie J Chang-Hasnain

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/4953088/connie-j-chang-hasnain-publications-by-citations.pdf$

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

310
papers

9,160
citations

45
h-index

85
g-index

427
ext. papers

44
ext. citations

45
h-index

45
L-index

#	Paper	IF	Citations
310	Nanolasers grown on silicon. <i>Nature Photonics</i> , 2011 , 5, 170-175	33.9	387
309	A surface-emitting laser incorporating a high-index-contrast subwavelength grating. <i>Nature Photonics</i> , 2007 , 1, 119-122	33.9	387
308	Slow-light optical buffers: capabilities and fundamental limitations. <i>Journal of Lightwave Technology</i> , 2005 , 23, 4046-4066	4	312
307	. IEEE Journal of Quantum Electronics, 1991 , 27, 1402-1409	2	311
306	High-contrast gratings for integrated optoelectronics. <i>Advances in Optics and Photonics</i> , 2012 , 4, 379	16.7	300
305	Ultrabroadband mirror using low-index cladded subwavelength grating. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 518-520	2.2	286
304	Tunable VCSEL. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6, 978-987	3.8	247
303	Slow light in semiconductor quantum wells. <i>Optics Letters</i> , 2004 , 29, 2291-3	3	232
302	Theoretical analysis of subwavelength high contrast grating reflectors. <i>Optics Express</i> , 2010 , 18, 16973	- 8§ 3	205
301	Broad-band mirror (1.12-1.62 th) using a subwavelength grating. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 1676-1678	2.2	205
300	Critical diameter for III-V nanowires grown on lattice-mismatched substrates. <i>Applied Physics Letters</i> , 2007 , 90, 043115	3.4	186
299	Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. <i>Optics Express</i> , 2010 , 18, 12606-14	3.3	160
298	A nanoelectromechanical tunable laser. <i>Nature Photonics</i> , 2008 , 2, 180-184	33.9	137
297	Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths. <i>Optics Express</i> , 2008 , 16, 6609-18	3.3	123
296	. IEEE Journal of Quantum Electronics, 1991 , 27, 1368-1376	2	122
295	Flexible photonic metastructures for tunable coloration. <i>Optica</i> , 2015 , 2, 255	8.6	110
294	Transverse mode characteristics of vertical cavity surface-emitting lasers. <i>Applied Physics Letters</i> , 1990 , 57, 218-220	3.4	108

293	Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating. <i>Optics Express</i> , 2008 , 16, 17282-7	3.3	98
292	High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2009 , 15, 1485-1499	3.8	93
291	Injection locking of VCSELs. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2003 , 9, 1386-1393	3.8	92
2 90	Physics of near-wavelength high contrast gratings. <i>Optics Express</i> , 2012 , 20, 10888-95	3.3	91
289	Atomically sharp catalyst-free wurtzite GaAsAlGaAs nanoneedles grown on silicon. <i>Applied Physics Letters</i> , 2008 , 93, 023116	3.4	89
288	GaAs micromachined widely tunable Fabry-Perot filters. <i>Electronics Letters</i> , 1995 , 31, 228-229	1.1	85
287	GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate. <i>Nano Letters</i> , 2011 , 11, 385-90	11.5	81
286	Tunable micromachined vertical cavity surface emitting laser. <i>Electronics Letters</i> , 1995 , 31, 1671-1672	1.1	78
285	Slow and Fast Light in Semiconductor Quantum-Well and Quantum-Dot Devices. <i>Journal of Lightwave Technology</i> , 2006 , 24, 4642-4654	4	77
284	1550 nm high contrast grating VCSEL. Optics Express, 2010 , 18, 15461-6	3.3	72
284	1550 nm high contrast grating VCSEL. <i>Optics Express</i> , 2010 , 18, 15461-6 Slow light using semiconductor quantum dots. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, S3727-S3		7 ²
, i			
283	Slow light using semiconductor quantum dots. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, S3727-S3. Room temperature slow light in a quantum-well waveguide via coherent population oscillation.	73.5	72
283	Slow light using semiconductor quantum dots. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, S3727-S3 Room temperature slow light in a quantum-well waveguide via coherent population oscillation. <i>Optics Express</i> , 2005 , 13, 9909-15 Microwave performance of optically injection-locked VCSELs. <i>IEEE Transactions on Microwave</i>	7 3. \$	7 ²
283	Slow light using semiconductor quantum dots. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, S3727-S3 Room temperature slow light in a quantum-well waveguide via coherent population oscillation. <i>Optics Express</i> , 2005 , 13, 9909-15 Microwave performance of optically injection-locked VCSELs. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2006 , 54, 788-796 Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals. <i>Advances in</i>	73.\$ 3.3 4.1	7 ² 7 ¹
283 282 281 280	Slow light using semiconductor quantum dots. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, S3727-S3 Room temperature slow light in a quantum-well waveguide via coherent population oscillation. <i>Optics Express</i> , 2005 , 13, 9909-15 Microwave performance of optically injection-locked VCSELs. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2006 , 54, 788-796 Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals. <i>Advances in Optics and Photonics</i> , 2018 , 10, 180 Top-emitting micromechanical VCSEL with a 31.6-nm tuning range. <i>IEEE Photonics Technology</i>	73.\$ 3.3 4.1 16.7	7 ² 7 ¹ 69
283 282 281 280 279	Slow light using semiconductor quantum dots. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, S3727-S3 Room temperature slow light in a quantum-well waveguide via coherent population oscillation. <i>Optics Express</i> , 2005 , 13, 9909-15 Microwave performance of optically injection-locked VCSELs. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2006 , 54, 788-796 Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals. <i>Advances in Optics and Photonics</i> , 2018 , 10, 180 Top-emitting micromechanical VCSEL with a 31.6-nm tuning range. <i>IEEE Photonics Technology Letters</i> , 1998 , 10, 18-20 High-contrast gratings as a new platform for integrated optoelectronics. <i>Semiconductor Science and</i>	73.8 3.3 4.1 16.7 2.2	72 71 71 69 64

275	A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings. <i>Optics Express</i> , 2009 , 17, 1508-17	3.3	54
274	Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates. <i>Journal of Applied Physics</i> , 2008 , 104, 044313	2.5	53
273	Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition. <i>Applied Physics Letters</i> , 1990 , 56, 2384-2386	3.4	53
272	. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1701311-1701311	3.8	52
271	Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings. <i>Optics Express</i> , 2010 , 18, 694-9	3.3	50
270	Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier. <i>Optics Express</i> , 2005 , 13, 7899	-304	50
269	Matrix Fabry-Perot resonance mechanism in high-contrast gratings. <i>Optics Letters</i> , 2011 , 36, 1704-6	3	49
268	Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate. <i>Optics Express</i> , 2015 , 23, 2512-23	3.3	48
267	Octave bandwidth photonic fishnet-achromatic-metalens. <i>Nature Communications</i> , 2020 , 11, 3205	17.4	46
266	Optical phased array using high contrast gratings for two dimensional beamforming and beamsteering. <i>Optics Express</i> , 2013 , 21, 12238-48	3.3	46
265	Novel cascaded injection-locked 1.55-mum VCSELs with 66 GHz modulation bandwidth. <i>Optics Express</i> , 2007 , 15, 14810-6	3.3	45
264	Unconventional growth mechanism for monolithic integration of III-V on silicon. ACS Nano, 2013, 7, 100	- 7 16.7	44
263	Second-harmonic generation from a single wurtzite GaAs nanoneedle. <i>Applied Physics Letters</i> , 2010 , 96, 051110	3.4	44
262	Widely and continuously tunable micromachined resonant cavity detector with wavelength tracking. <i>IEEE Photonics Technology Letters</i> , 1996 , 8, 98-100	2.2	44
261	Matrix addressable vertical cavity surface emitting laser array. <i>Electronics Letters</i> , 1991 , 27, 437	1.1	44
260	Optoelectronic Oscillators Using Direct-Modulated Semiconductor Lasers Under Strong Optical Injection. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2009 , 15, 572-577	3.8	42
259	Optical beamsteering using an 8 B MEMS phased array with closed-loop interferometric phase control. <i>Optics Express</i> , 2013 , 21, 2807-15	3.3	41
258	Tailoring the optical characteristics of microsized InP nanoneedles directly grown on silicon. <i>Nano Letters</i> , 2014 , 14, 183-90	11.5	40

257	. Journal of Lightwave Technology, 2012 , 30, 3647-3652	4	40
256	Slow light in semiconductor heterostructures. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, R93-R107	3	40
255	50-GHz optically injection-locked 1.55-/spl mu/m VCSELs. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 367-369	2.2	40
254	Low threshold buried heterostructure vertical cavity surface emitting laser. <i>Applied Physics Letters</i> , 1993 , 63, 1307-1309	3.4	40
253	Nanophotonic integrated circuits from nanoresonators grown on silicon. <i>Nature Communications</i> , 2014 , 5, 4325	17.4	39
252	Long-Wavelength High-Contrast Grating Vertical-Cavity Surface-Emitting Laser. <i>IEEE Photonics Journal</i> , 2010 , 2, 415-422	1.8	39
251	. IEEE Journal of Selected Topics in Quantum Electronics, 1995 , 1, 629-637	3.8	39
250	Large Fabrication Tolerance for VCSELs Using High-Contrast Grating. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 434-436	2.2	38
249	Nano electro-mechanical optoelectronic tunable VCSEL. Optics Express, 2007, 15, 1222-7	3.3	38
248	Ultraslow light (. Applied Physics Letters, 2005 , 87, 171102	3.4	38
248 247	Ultraslow light (. <i>Applied Physics Letters</i> , 2005 , 87, 171102 Wavelength-selectable laser emission from a multistripe array grating integrated cavity laser. <i>Applied Physics Letters</i> , 1992 , 61, 2750-2752	3.4	38
<u> </u>	Wavelength-selectable laser emission from a multistripe array grating integrated cavity laser.	· ·	
247	Wavelength-selectable laser emission from a multistripe array grating integrated cavity laser. Applied Physics Letters, 1992, 61, 2750-2752 Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent	3.4	38
247 246	Wavelength-selectable laser emission from a multistripe array grating integrated cavity laser. Applied Physics Letters, 1992, 61, 2750-2752 Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths. Optica, 2017, 4, 717 Improved semiconductor-laser dynamics from induced population pulsation. IEEE Journal of	3.4	38
247246245	Wavelength-selectable laser emission from a multistripe array grating integrated cavity laser. Applied Physics Letters, 1992, 61, 2750-2752 Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths. Optica, 2017, 4, 717 Improved semiconductor-laser dynamics from induced population pulsation. IEEE Journal of Quantum Electronics, 2006, 42, 552-562	3.4	38 37 37
247 246 245	Wavelength-selectable laser emission from a multistripe array grating integrated cavity laser. Applied Physics Letters, 1992, 61, 2750-2752 Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths. Optica, 2017, 4, 717 Improved semiconductor-laser dynamics from induced population pulsation. IEEE Journal of Quantum Electronics, 2006, 42, 552-562 Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning. Optics Express, 2008, 16, 14. Study of long-wavelength VCSEL-VCSEL injection locking for 2.5-Gb/s transmission. IEEE Photonics	3.4 8.6 2 223136	38 37 37 36
247 246 245 244	Wavelength-selectable laser emission from a multistripe array grating integrated cavity laser. Applied Physics Letters, 1992, 61, 2750-2752 Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths. Optica, 2017, 4, 717 Improved semiconductor-laser dynamics from induced population pulsation. IEEE Journal of Quantum Electronics, 2006, 42, 552-562 Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning. Optics Express, 2008, 16, 14. Study of long-wavelength VCSEL-VCSEL injection locking for 2.5-Gb/s transmission. IEEE Photonics Technology Letters, 2002, 14, 1635-1637 Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM	3·4 8.6 2 22/3/3/6	38 37 37 36 36

239	Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers. <i>Applied Physics Letters</i> , 2008 , 92, 171108	3.4	35
238	Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission. <i>Optics Express</i> , 2009 , 17, 7831-6	3.3	34
237	High speed optical phased array using high contrast grating all-pass filters. <i>Optics Express</i> , 2014 , 22, 200	038544	33
236	Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror. <i>Applied Physics Letters</i> , 2006 , 88, 031102	3.4	33
235	. Proceedings of the IEEE, 2012 , 100, 1604-1643	14.3	32
234	22-Gb/s Long Wavelength VCSELs. Optics Express, 2009 , 17, 17547-54	3.3	32
233	Nonequilibrium model for semiconductor laser modulation response. <i>IEEE Journal of Quantum Electronics</i> , 2002 , 38, 402-409	2	32
232	High-contrast grating resonators for label-free detection of disease biomarkers. <i>Scientific Reports</i> , 2016 , 6, 27482	4.9	32
231	GaAs nanoneedles grown on sapphire. <i>Applied Physics Letters</i> , 2011 , 98, 123101	3.4	31
230	Size effect of high contrast gratings in VCSELs. <i>Optics Express</i> , 2009 , 17, 24002-7	3.3	31
229	Bandwidth Enhancement by Master Modulation of Optical Injection-Locked Lasers. <i>Journal of Lightwave Technology</i> , 2008 , 26, 2584-2593	4	31
228	High performance micromechanical tunable vertical cavity surface emitting lasers. <i>Electronics Letters</i> , 1996 , 32, 1888	1.1	31
227	Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity. <i>Applied Physics Letters</i> , 1986 , 49, 614-616	3.4	31
226	Wavelength-Swept VCSELs. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2017 , 23, 1-16	3.8	30
225	Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber. <i>Optics Express</i> , 2017 , 25, 18462-18473	3.3	30
224	A 32 B2 optical phased array using polysilicon sub-wavelength high-contrast-grating mirrors. <i>Optics Express</i> , 2014 , 22, 19029-39	3.3	30
223	Widely tunable torsional optical filter. <i>IEEE Photonics Technology Letters</i> , 2002 , 14, 819-821	2.2	30
222	Surface-normal electro-optic spatial light modulator using graphene integrated on a high-contrast grating resonator. <i>Optics Express</i> , 2016 , 24, 26035-26043	3.3	30

221	Monolithic high-contrast metastructure for beam-shaping VCSELs. <i>Optica</i> , 2018 , 5, 10	8.6	28
220	High-quality InP nanoneedles grown on silicon. <i>Applied Physics Letters</i> , 2013 , 102, 012115	3.4	28
219	Performance of a Multi-Gb/s 60 GHz Radio Over Fiber System Employing a Directly Modulated Optically Injection-Locked VCSEL. <i>Journal of Lightwave Technology</i> , 2010 , 28, 2436-2444	4	28
218	Nanolasers grown on silicon-based MOSFETs. <i>Optics Express</i> , 2012 , 20, 12171-6	3.3	28
217	Site-Controlled Growth of Monolithic InGaAs/InP Quantum Well Nanopillar Lasers on Silicon. <i>Nano Letters</i> , 2017 , 17, 2697-2702	11.5	27
216	Monolithic 2D-VCSEL array with >2 W CW and >5 W pulsed output power. <i>Electronics Letters</i> , 1998 , 34, 2132	1.1	27
215	. IEEE Photonics Technology Letters, 1993 , 5, 838-841	2.2	27
214	Beyond-Bandwidth Electrical Pulse Modulation of a TO-Can Packaged VCSEL for 10 Gbit/s Injection-Locked NRZ-to-RZ Transmission. <i>Journal of Lightwave Technology</i> , 2011 , 29, 830-841	4	26
213	Low loss hollow-core waveguide on a silicon substrate. <i>Nanophotonics</i> , 2012 , 1, 23-29	6.3	26
212	Multiple-wavelength vertical-cavity surface-emitting laser arrays with a record wavelength span. <i>IEEE Photonics Technology Letters</i> , 1996 , 8, 4-6	2.2	26
211	Laser optomechanics. <i>Scientific Reports</i> , 2015 , 5, 13700	4.9	25
210	Rastered, uniformly separated wavelengths emitted from a two-dimensional vertical-cavity surface-emitting laser array. <i>Applied Physics Letters</i> , 1991 , 58, 31-33	3.4	25
209	Spatial mode structure of broad-area semiconductor quantum well lasers. <i>Applied Physics Letters</i> , 1989 , 54, 205-207	3.4	25
208	THz-bandwidth tunable slow light in semiconductor optical amplifiers. <i>Optics Express</i> , 2007 , 15, 747-53	3.3	24
207	Experimental and theoretical study of wide hysteresis cycles in 1550 nm VCSELs under optical injection. <i>Optics Express</i> , 2013 , 21, 3125-32	3.3	23
206	Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers. <i>Optics Express</i> , 2006 , 14, 12968-75	3.3	23
205	Illumination Angle Insensitive Single Indium Phosphide Tapered Nanopillar Solar Cell. <i>Nano Letters</i> , 2015 , 15, 4961-7	11.5	22
204	Widely tunable 1.5 [micro sign]m micromechanical optical filter using AlOx/AlGaAs DBR. <i>Electronics Letters</i> , 1997 , 33, 1702	1.1	22

203	Greatly enhanced modulation response of injection-locked multimode VCSELs. <i>Optics Express</i> , 2008 , 16, 21582-6	3.3	21
202	Enhancement of dynamic range in 1.55-th VCSELs using injection locking. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 498-500	2.2	21
201	Polarization control of vertical-cavity surface-emitting lasers by electro-optic birefringence. <i>Applied Physics Letters</i> , 2000 , 76, 813-815	3.4	21
200	Ultracompact Position-Controlled InP Nanopillar LEDs on Silicon with Bright Electroluminescence at Telecommunication Wavelengths. <i>ACS Photonics</i> , 2017 , 4, 695-702	6.3	20
199	Theory and design of two-dimensional high-contrast-grating phased arrays. <i>Optics Express</i> , 2015 , 23, 24508-24	3.3	20
198	Elastic energy relaxation and critical thickness for plastic deformation in the core-shell InGaAs/GaAs nanopillars. <i>Journal of Applied Physics</i> , 2013 , 113, 104311	2.5	20
197	Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 1197-1199	2.2	20
196	Optically Injection-Locked 1.55-\$mu\$ m VCSELs as Upstream Transmitters in WDM-PONs. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 2371-2373	2.2	20
195	Slow and superluminal light in semiconductor optical amplifiers. <i>Electronics Letters</i> , 2005 , 41, 922	1.1	20
194	Characteristics of the off-centered apertured mirror external cavity laser array. <i>Applied Physics Letters</i> , 1989 , 54, 484-486	3.4	20
193	Tunable electroabsorption in gallium arsenide doping superlattices. <i>Applied Physics Letters</i> , 1987 , 50, 915-917	3.4	20
192	Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon. <i>Scientific Reports</i> , 2016 , 6, 33368	4.9	19
191	Nanopillar lasers directly grown on silicon with heterostructure surface passivation. <i>ACS Nano</i> , 2014 , 8, 6833-9	16.7	19
190	Monolithic Integrated Piezoelectric MEMS-Tunable VCSEL. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2007 , 13, 374-380	3.8	19
189	Ultra-sensitive immunoassay using VCSEL detection system. <i>Electronics Letters</i> , 2004 , 40, 649	1.1	19
188	Self-pulsating and bistable VCSEL with controllable intracavity quantum-well saturable absorber. <i>Electronics Letters</i> , 1997 , 33, 1708	1.1	19
187	Low Birefringence and 2-D Optical Confinement of Hollow Waveguide With Distributed Bragg Reflector and High-Index-Contrast Grating. <i>IEEE Photonics Journal</i> , 2009 , 1, 135-143	1.8	18
186	A New Amplifier Model for Resonance Enhancement of Optically Injection-Locked Lasers. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 395-397	2.2	18

(1999-2004)

185	Compact label-free biosensor using VCSEL-based measurement system. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 1712-1714	2.2	18
184	Modulation of a vertical-cavity surface-emitting laser using an intracavity quantum-well absorber. <i>IEEE Photonics Technology Letters</i> , 1998 , 10, 319-321	2.2	18
183	. IEEE Photonics Technology Letters, 1991 , 3, 863-865	2.2	18
182	High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1 eV. <i>Nano Letters</i> , 2014 , 14, 3235-40	11.5	17
181	Widely tunable 1060-nm VCSEL with high-contrast grating mirror. <i>Optics Express</i> , 2017 , 25, 11844-11854	43.3	17
180	Single crystalline InGaAs nanopillar grown on polysilicon with dimensions beyond the substrate grain size limit. <i>Nano Letters</i> , 2013 , 13, 5931-7	11.5	17
179	Greatly increased fiber transmission distance with an optically injection-locked vertical-cavity surface-emitting laser. <i>Optics Express</i> , 2009 , 17, 13785-91	3.3	17
178	High performance and novel effects of micromechanical tunable vertical-cavity lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1997 , 3, 691-697	3.8	17
177	VCSEL Optoelectronic Biosensor for Detection of Infectious Diseases. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 443-445	2.2	17
176	. Journal of Lightwave Technology, 1991 , 9, 1665-1673	4	17
176	. Journal of Lightwave Technology, 1991, 9, 1665-1673 Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity. Nano Letters, 2015, 15, 7189-98	11.5	17 16
<u> </u>	Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity. <i>Nano</i>	411.511.5	16
175	Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity. <i>Nano Letters</i> , 2015 , 15, 7189-98		16
175 174	Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity. <i>Nano Letters</i> , 2015 , 15, 7189-98 Metastable growth of pure wurtzite InGaAs microstructures. <i>Nano Letters</i> , 2014 , 14, 4757-62 Effect of facet roughness on etched-facet semiconductor laser diodes. <i>Applied Physics Letters</i> , 1996	11.5	16
175 174 173	Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity. <i>Nano Letters</i> , 2015 , 15, 7189-98 Metastable growth of pure wurtzite InGaAs microstructures. <i>Nano Letters</i> , 2014 , 14, 4757-62 Effect of facet roughness on etched-facet semiconductor laser diodes. <i>Applied Physics Letters</i> , 1996 , 68, 1598-1600	3.4	16 16
175 174 173	Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity. <i>Nano Letters</i> , 2015 , 15, 7189-98 Metastable growth of pure wurtzite InGaAs microstructures. <i>Nano Letters</i> , 2014 , 14, 4757-62 Effect of facet roughness on etched-facet semiconductor laser diodes. <i>Applied Physics Letters</i> , 1996 , 68, 1598-1600 MEMS-tunable VCSELs using 2D high-contrast gratings. <i>Optics Letters</i> , 2017 , 42, 823-826	3·4 3	16 16 16
175 174 173 172	Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity. <i>Nano Letters</i> , 2015 , 15, 7189-98 Metastable growth of pure wurtzite InGaAs microstructures. <i>Nano Letters</i> , 2014 , 14, 4757-62 Effect of facet roughness on etched-facet semiconductor laser diodes. <i>Applied Physics Letters</i> , 1996 , 68, 1598-1600 MEMS-tunable VCSELs using 2D high-contrast gratings. <i>Optics Letters</i> , 2017 , 42, 823-826 Novel modulated-master injection-locked 1.55-microm VCSELs. <i>Optics Express</i> , 2006 , 14, 10500-7 The physics of negative differential resistance of an intracavity voltage-controlled absorber in a	3.4 3 3.3	16 16 16 16

167	. IEEE Journal of Selected Topics in Quantum Electronics, 1995 , 1, 624-628	3.8	14
166	Temperature dependence of light-current characteristics of 0.98-Th Al-free strained-quantum-well lasers. <i>IEEE Photonics Technology Letters</i> , 1994 , 6, 1303-1305	2.2	14
165	Inducing electron spin coherence in GaAs quantum well waveguides: Spin coherence without spin precession. <i>Physical Review B</i> , 2005 , 72,	3.3	13
164	Injection-locked 1.55-/spl mu/m tunable VCSEL for uncooled WDM transmitter applications. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 888-890	2.2	13
163	Thermal oxidation of AlGaAs: modeling and process control. <i>IEEE Journal of Quantum Electronics</i> , 2003 , 39, 577-585	2	13
162	Collimating diode laser beams from a large-area VCSEL-array using microlens array. <i>IEEE Photonics Technology Letters</i> , 1999 , 11, 506-508	2.2	13
161	. IEEE Photonics Technology Letters, 1994 , 6, 924-926	2.2	13
160	Polarisation and modal behaviour of low threshold oxide and airgap confined vertical cavity lasers. <i>Electronics Letters</i> , 1995 , 31, 2014-2015	1.1	12
159	. IEEE Photonics Technology Letters, 1995 , 7, 1066-1068	2.2	12
158	. IEEE Photonics Technology Letters, 1995 , 7, 1240-1242	2.2	12
157	Low threshold 0.98 th aluminium-free strained-quantum-well InGaAs/InGaAsP/InGaP lasers. <i>Electronics Letters</i> , 1993 , 29, 1-2	1.1	12
156	Integrated external cavity quantum well laser array using single epitaxial growth on a patterned substrate. <i>Applied Physics Letters</i> , 1990 , 56, 429-431	3.4	12
155	Bandwidth enhancement of injection-locked distributed reflector lasers with wirelike active regions. <i>Optics Express</i> , 2010 , 18, 16370-8	3.3	11
154	Reflection-mode optical injection locking. <i>Optics Express</i> , 2010 , 18, 20887-93	3.3	11
153	Dispersion properties of high-contrast grating hollow-core waveguides. <i>Optics Letters</i> , 2010 , 35, 4099-7	1031	11
152	Effect of operating electric power on the dynamic behavior of quantum well vertical-cavity surface-emitting lasers. <i>Applied Physics Letters</i> , 1991 , 58, 1247-1249	3.4	11
151	High-yield processing and single-mode operation of passive antiguide region vertical-cavity lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1997 , 3, 429-434	3.8	10
150	Chirp-enhanced fast light in semiconductor optical amplifiers. <i>Optics Express</i> , 2007 , 15, 17631-8	3.3	10

149	Transmission performance of a 1.5-th 2.5-Gb/s directly modulated tunable VCSEL. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 599-601	2.2	10
148	50 km error-free 10 Gbit/s WDM transmission using directly modulated long-wavelength VCSELs. <i>Electronics Letters</i> , 2000 , 36, 1793	1.1	10
147	Buried heterostructure 0.98 th InGaAs/InGaAsP/InGaP lasers. <i>Applied Physics Letters</i> , 1993 , 63, 2183-218	3 5 .4	10
146	Long distance single-mode fiber transmission of multimode VCSELs by injection locking. <i>Optics Express</i> , 2010 , 18, 20552-7	3.3	9
145	High performance continuously tunable top-emitting vertical cavity laser with 20 nm wavelength range. <i>Electronics Letters</i> , 1997 , 33, 1051	1.1	9
144	Multiple-wavelength vertical-cavity surface-emitting laser arrays. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1997 , 3, 422-428	3.8	9
143	Buried selectively-oxidized AlGaAs structures grown on nonplanar substrates. <i>Optics Express</i> , 2002 , 10, 1003-8	3.3	9
142	Beam steerable semiconductor lasers with large steering range and resolvable spots. <i>Electronics Letters</i> , 1994 , 30, 2034-2035	1.1	9
141	. IEEE Photonics Technology Letters, 1991 , 3, 268-269	2.2	9
140	Three-dimensional whispering gallery modes in InGaAs nanoneedle lasers on silicon. <i>Applied Physics Letters</i> , 2014 , 105, 111105	3.4	8
139	Valence band splitting in wurtzite InGaAs nanoneedles studied by photoluminescence excitation spectroscopy. <i>ACS Nano</i> , 2014 , 8, 11440-6	16.7	8
138	Polarized zone-center phonon modes of wurtzite GaAs. <i>Physical Review B</i> , 2010 , 81,	3.3	8
137	Electron spin polarization induced by linearly polarized light in a (110) GaAs quantum-well waveguide. <i>Physical Review Letters</i> , 2009 , 102, 206604	7.4	8
136	A novel 4 x 8 single-mode independently addressable oxide-isolated VCSEL array. <i>IEEE Photonics Technology Letters</i> , 1997 , 9, 1196-1198	2.2	8
135	Ultrahigh-bandwidth electrically tunable fast and slow light in semiconductor optical amplifiers [Invited]. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2008 , 25, C46	1.7	8
134	Slow light using spin coherence and V-type electromagnetically induced transparency in [110] strained quantum wells. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2007 , 24, 849	1.7	8
133	Electrically tunable fast light at THz bandwidth using cascaded semiconductor optical amplifiers. <i>Optics Express</i> , 2007 , 15, 15863-7	3.3	8
132	Micromechanical tunable optical filters: general design rules for wavelengths from near-IR up to 10h. Sensors and Actuators A: Physical, 2005 , 119, 57-62	3.9	8

131	Parasitics and design considerations on oxide-implant VCSELs. <i>IEEE Photonics Technology Letters</i> , 2001 , 13, 1274-1276	2.2	8
130	Dynamic behavior and applications of a three-contact vertical-cavity surface-emitting laser. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1999 , 5, 512-519	3.8	8
129	. IEEE Photonics Technology Letters, 1995 , 7, 971-973	2.2	8
128	IIIIV Compound Semiconductor Nanopillars Monolithically Integrated to Silicon Photonics. <i>ACS Photonics</i> , 2017 , 4, 1021-1025	6.3	7
127	Long-Wavelength Tunable Detector Using High-Contrast Grating. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2014 , 20, 178-185	3.8	7
126	Composition homogeneity in InGaAs/GaAs core-shell nanopillars monolithically grown on silicon. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 16706-11	9.5	7
125	Breakthroughs in Photonics 2013: Advances in Nanoantennas. <i>IEEE Photonics Journal</i> , 2014 , 6, 1-6	1.8	7
124	Comprehensive model of 1550 nm MEMS-tunable high-contrast-grating VCSELs. <i>Optics Express</i> , 2014 , 22, 8541-55	3.3	7
123	. Journal of Lightwave Technology, 2012 , 30, 3640-3646	4	7
122	Optical phase modulation based on directly modulated reflection-mode OIL-VCSEL. <i>Optics Express</i> , 2013 , 21, 22114-23	3.3	7
121	An ellipse model for cavity mode behavior of optically injection-locked VCSELs. <i>Optics Express</i> , 2012 , 20, 6980-8	3.3	7
120	Greatly enhanced slow and fast light in chirped pulse semiconductor optical amplifiers: theory and experiments. <i>Optics Express</i> , 2009 , 17, 2188-97	3.3	7
119	Rayleigh backscattering and extinction ratio study of optically injection-locked 1.55 [micro sign]m VCSELs. <i>Electronics Letters</i> , 2007 , 43, 182	1.1	7
118	Design of a monolithic piezoelectrically actuated microelectromechanical tunable vertical-cavity surface-emitting laser. <i>Optics Letters</i> , 2005 , 30, 896-8	3	7
117	Resonant-antiresonant coupled cavity VCSELs. Optics Express, 2019, 27, 1798-1807	3.3	7
116	Growth kinetics of GaAs nanoneedles on silicon and sapphire substrates. <i>Applied Physics Letters</i> , 2011 , 98, 153113	3.4	6
115	Experimental demonstration of a four-plane 2-D multiple-wavelength optical interconnection using integrated VCSEL arrays and MQW/DBR detectors. <i>IEEE Photonics Technology Letters</i> , 1997 , 9, 1646-164	18 ^{2.2}	6
114	Vertical-cavity lasers with an intracavity resonant detector. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1997 , 3, 416-421	3.8	6

(2008-1997)

113	Compact 2D laser beam scanner with fan laser array and Si micromachined microscanner. <i>Electronics Letters</i> , 1997 , 33, 1143	1.1	6
112	Tunable Optical Equalizer Using Diffraction Grating Filters. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1590-1592	2.2	6
111	Upstream vertical cavity surface-emitting lasers for fault monitoring and localization in WDM passive optical networks. <i>Optics Communications</i> , 2008 , 281, 2218-2226	2	6
110	Optically Injection-Locked Optoelectronic Oscillators with Low RF Threshold Gain 2007,		6
109	High quality GaAs quantum well lasers grown on InP substrates by organometallic chemical vapor deposition. <i>Applied Physics Letters</i> , 1989 , 54, 156-158	3.4	6
108	. IEEE Journal of Quantum Electronics, 1990 , 26, 1713-1716	2	6
107	Integrated plasmonic refractive index sensor based on grating/metal film resonant structure 2016,		5
106	Novel high efficiency vertical to in-plane optical coupler 2012 ,		5
105	Physics of high contrast gratings: a band diagram insight 2013 ,		5
104	Intracavity resonant quantum-well photodetection of a vertical-cavity surface-emitting laser. <i>Electronics Letters</i> , 1997 , 33, 597	1.1	5
103	Buried selectively oxidized AlGaAs structures grown on nonplanar substrates. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 75-77	2.2	5
102	VCSEL for Metro Communications 2002 , 666-698		5
101	Experimental demonstration of reconfigurable and simultaneous wavelength-division-multiplexed multiple-plane optical interconnections. <i>IEEE Photonics Technology Letters</i> , 1996 , 8, 302-304	2.2	5
100	High-speed avalanche photodiodes using IIIIV nanopillars monolithically grown on silicon 2012 ,		4
99	Reconfigurable Multifunctional Operation Using Optical Injection-Locked Vertical-Cavity Surface-Emitting Lasers. <i>Journal of Lightwave Technology</i> , 2009 , 27, 2958-2963	4	4
98	Multi-Gbps ASK and QPSK-modulated 60 GHz RoF Link using an Optically Injection Locked VCSEL 2010 ,		4
97	NEMO tunable VCSEL using ultra compact high contrast grating for high speed tuning 2008,		4
96	Ultrahigh-speed laser modulation by injection locking 2008 , 145-182		4

95	Optoelectronic Oscillator Using Injection-Locked VCSELs. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007,		4
94	Bandwidth Enhancement by Optical Amplitude and Phase Modulation of Injection-Locked Semiconductor Lasers 2007 ,		4
93	Ultracompact high-sensitivity label-free biosensor using VCSEL 2004 , 5328, 140		4
92	Comparative study of the analog performance of a vertical-cavity surface-emitting laser under gain and cavity loss modulation. <i>Applied Physics Letters</i> , 2000 , 77, 2092-2094	3.4	4
91	. IEEE Photonics Technology Letters, 1993 , 5, 975-978	2.2	4
90	Improved threshold characteristics of air-post vertical-cavity surface-emitting lasers using unique etching process. <i>Electronics Letters</i> , 1991 , 27, 2243	1.1	4
89	High speed operation of hybrid CMOS vertical cavity surface emitting laser array. <i>Electronics Letters</i> , 1991 , 27, 1189	1.1	4
88	Characteristics of a monolithically integrated doping superlattice optical circuit. <i>Applied Physics Letters</i> , 1988 , 52, 1765-1767	3.4	4
87	High-Q and low-loss chalcogenide waveguide for nonlinear supercontinuum generation 2016,		4
86	High-efficiency aperiodic two-dimensional high-contrast-grating hologram 2016,		3
85	Room-temperature Fabry-Perot resonances in suspended InGaAs/InP quantum-well nanopillars on a silicon substrate. <i>Optics Express</i> , 2017 , 25, 271-277	3.3	3
84	Tunable 1550nm VCSELs using high-contrast grating for next-generation networks 2013 ,		3
83	Al-based thermal oxides in vertical cavity surface emitting lasers 1997,		3
82	Self-pulsations, bistability, and intracavity quantum well absorber modulation of VCSELs 1997,		3
81	Adjustable Chirp Injection-Locked 1.55-th VCSELs for Enhanced Chromatic Dispersion Compensation at 10-Gbit/s 2008 ,		3
80	Novel Fault Monitoring and Localization Scheme in WDM-PONs with Upstream VCSEL Transmitters 2007 ,		3
79	Tunable absorption and electroluminescence in GaAs doping superlattices. <i>Superlattices and Microstructures</i> , 1987 , 3, 277-282	2.8	3
78	Integration of III-V Nanopillar Resonator to In-Plane Silicon Waveguides 2016,		3

(2016-2020)

77	Feasibility of Using High-Contrast Grating as a Point-of-Care Sensor for Therapeutic Drug Monitoring of Immunosuppressants. <i>IEEE Journal of Translational Engineering in Health and Medicine</i> , 2020 , 8, 2800206	3	2
76	High speed, ultra-compact spectrometer using high contrast grating swept-wavelength detector 2013 ,		2
75	High quality InGaP micropillars directly grown on silicon 2013 ,		2
74	Low-loss slow light inside high contrast grating waveguide 2012 ,		2
73	Slow-light high contrast metastructure hollow-core waveguides 2012 ,		2
72	High Reflectivity Subwavelength Metal Grating for VCSEL Applications 2011 ,		2
71	High contrast gratings for integrated optoelectronics 2010 ,		2
70	Multiwavelength HCG-VCSEL array 2010 ,		2
69	All-semiconductor nanolasers on silicon 2010 ,		2
68	Optical phased array for far field beam steering with varied HCG 2012 ,		2
67	Celebrating 25 Years of the IEEE/OSA Journal of Lightwave Technology. <i>Journal of Lightwave Technology</i> , 2008 , 26, 990-993	4	2
66	80-GHz intrinsic 3-dB bandwidth of directly modulated semiconductor lasers under optical injection locking 2008 ,		2
65	Analytical solution and design guideline for highly reflective subwavelength gratings 2008,		2
64	Electronically and optically controllable vertical-cavity surface-emitting laser arrays for optical interconnect and signal processing applications (Invited Paper) 1992 ,		2
63	Single-transverse mode, low threshold current vertical-cavity surface-emitting laser. <i>IEEE Transactions on Electron Devices</i> , 1993 , 40, 2116-2117	2.9	2
62	Half-cycle QAM modulation for VCSEL-based optical links 2012 ,		2
61	Location-resolvable optical monitored growth of multiple-wavelength vertical-cavity laser arrays. <i>Electronics Letters</i> , 1995 , 31, 1840-1842	1.1	2
60	Beam-Shaping Single-Mode VCSEL With A High-Contrast Grating Mirror 2016 ,		2

59	A Llinear LHigh-Contrast Gratings Hollow-Core Waveguide and its System Level Performance 2010,		2
58	. Journal of Lightwave Technology, 2016 , 34, 2079-2084	4	2
57	Progress and prospects of silicon-based design for optical phased array 2016,		2
56	VCSEL Array for 3D Sensing 2019 ,		2
55	Design Rule of 2D High Contrast Gratings and Engineering of Orbital Angular Momentum of Light 2015 ,		1
54	Widely tunable 1060-nm high-contrast grating VCSEL 2016 ,		1
53	InP nanowire avalanche photodiode and bipolar junction phototransistor integrated on silicon substrate 2014 ,		1
52	Integrated Optics Using High Contrast Gratings 2015 , 57-105		1
51	1550-nm wavelength-tunable HCG VCSELs 2014 ,		1
50	. IEEE Photonics Journal, 2012 , 4, 1372-1380	1.8	1
49	Characteristics of InP nanoneedles grown on silicon by low-temperature MOCVD 2012 ,		1
48	2012,		1
47	Experimental characterization on high contrast grating reflectivity 2012,		1
46	Sub-cycle QAM modulation for VCSEL-based optical fiber links. <i>Optics Express</i> , 2013 , 21, 1830-9	3.3	1
45	Ultra-compact Optical Switch Using High Contrast Grating Hollow-core Waveguide 2013,		1
44	Fast-Light to Slow-Light Switching in a Laser Cavity. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 971-9	732.2	1
43	2010,		1
42	1550 nm high contrast grating VCSEL using proton-implant-defined aperture 2010 ,		1

41	Double-Resonant Enhancement of Surface Enhanced Raman Scattering Using High Contrast Grating Resonators 2011 ,	1
40	Novel 2D High-Contrast Grating Hollow-Core Waveguide 2009 ,	1
39	Single Crystalline GaAs Nanoneedles Grown on 46% Lattice-Mismatched Sapphire with Bright Luminescence 2010 ,	1
38	Angle-etched facet laser arrays (fan laser arrays). <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1997 , 3, 684-690	1
37	High-Speed Modulation of Optical Injection-Locked Semiconductor Lasers 2008,	1
36	Tunable optical equalizer based on 1.55 fb VCSEL for modulation bandwidth enhancement 2008,	1
35	Systematic study on locking stability and frequency response of injection-locked multimode VCSELs 2008 ,	1
34	107-GHz Resonance Frequency of 1.55-th VCSELs under ultra-high optical injection locking 2008 ,	1
33	A novel high-Q resonator using high contrast subwavelength grating 2008,	1
32	Transverse Mode Control in High-Contrast Subwavelength Grating VCSEL 2007 ,	1
31	Variable optical buffer using slow light in semiconductor nanostructures 2004 ,	1
31	Variable optical buffer using slow light in semiconductor nanostructures 2004 , 1.55-Im tunable VCSEL for metro-WDM applications 2001 ,	
		1
30	1.55-Im tunable VCSEL for metro-WDM applications 2001 ,	1
30	1.55-Im tunable VCSEL for metro-WDM applications 2001, Electrically pumped directly modulated 1550-nm tunable VCSELs 2002, 4905, 198 Demonstration of long-wavelength directly modulated VCSEL transmission using SOAs. IEEE	1 1
30 29 28	1.55-Im tunable VCSEL for metro-WDM applications 2001, Electrically pumped directly modulated 1550-nm tunable VCSELs 2002, 4905, 198 Demonstration of long-wavelength directly modulated VCSEL transmission using SOAs. IEEE Photonics Technology Letters, 2002, 14, 1369-1371 2.2 Independent phase and magnitude control of an optically carried microwave signal with a	1 1 1
30 29 28 27	1.55-Im tunable VCSEL for metro-WDM applications 2001, Electrically pumped directly modulated 1550-nm tunable VCSELs 2002, 4905, 198 Demonstration of long-wavelength directly modulated VCSEL transmission using SOAs. IEEE Photonics Technology Letters, 2002, 14, 1369-1371 2.2 Independent phase and magnitude control of an optically carried microwave signal with a three-terminal vertical-cavity surface-emitting laser. IEEE Photonics Technology Letters, 1999, 11, 463-465-2	1 1 1 1 1

23	Novel AlGainAs/AlinAs lasers emitting at 1 fh. <i>Applied Physics Letters</i> , 1990 , 57, 2638-2640	3.4	1
22	GaAs Nanoneedle Photodetector Monolithically Grown on a (111) Si Substrate by MOCVD 2009 ,		1
21	Planar, High Numerical-aperture Lens Using Sub-wavelength High Contrast Grating 2010 ,		1
20	Surface-normal Coupled Four-wave Mixing in a High Contrast Grating Resonator 2015 ,		1
19	Room-Temperature InGaAs/InP Quantum-Well-in-Nanopillar Laser Directly Grown on Silicon 2016,		1
18	Efficient Electroluminescence from III/V Quantum-Well-in-Nanopillar Light Emitting Diodes Directly Grown on Silicon 2016 ,		1
17	Ultra-compact Optical Coupler and Splitter using High-Contrast Grating Hollow-Core Waveguide 2010 ,		1
16	Hybrid microdisk laser on a silicon platform using lateral-field optoelectronic tweezers assembly 2008 ,		1
15	Novel Inverse-tone High Contrast Grating Reflector 2010 ,		1
14	Novel Three-dimensional Hollow-core Waveguide Using High-contrast Sub-wavelength Grating 2011 ,		1
13	Compact On-Chip Optical Components Based on Multimode Interference Design Using High-Contrast Grating Hollow-Core Waveguides. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2016 , 22, 279-287	3.8	1
12	Effect of Transmission-Line Contact Length on the 50-Gbit/s Data Encoding Performance of a Multimode VCSEL. <i>Photonics</i> , 2022 , 9, 114	2.2	O
11	High-Contrast Grating VCSELs. Springer Series in Optical Sciences, 2013, 291-317	0.5	
10	. Proceedings of the IEEE, 2012 , 100, 1600-1603	14.3	
9	A Message From the JLT Editor-in-Chief: Btate of the Journal <i>Journal of Lightwave Technology</i> , 2012 , 30, 2741-2742	4	
8	On the Go to Reduce Time to Publication: A Message from the Editor-in-Chief. <i>Journal of Lightwave Technology</i> , 2009 , 27, 1063-1063	4	
7	Yield theory for diode laser fabrication. <i>Electronics Letters</i> , 1997 , 33, 496	1.1	
6	Correction to "Demonstration of Piezoelectric Actuated GaAs-Based MEMS Tunable VCSEL". <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 1475-1475	2.2	

LIST OF PUBLICATIONS

5	Introduction to the issue on semiconductor lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1999 , 5, 399-400	3.8
4	Multiple-wavelength Vertical Cavity Laser Arrays with Wide Wavelength Span and High Uniformity. <i>Optics and Photonics News</i> , 1996 , 7, 40	1.9
3	SWANET: an all-optical self-routed wavelength-addressable network 1995 , 2524, 73	
2	Wavelength-Demultiplexed Laser Interferometry for Metrology. <i>IEEE Photonics Journal</i> , 2021 , 13, 1-9	1.8
1	Resonant-cavity-enhanced p-i-n photodetector using a high-contrast-grating for 940nm <i>Optics Express</i> , 2022 , 30, 9298-9306	3.3