Lars Ojamäe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4952911/publications.pdf

Version: 2024-02-01

70961 62479 6,623 113 41 80 citations h-index g-index papers 114 114 114 6392 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Surface Structures from NH ₃ Chemisorption in CVD and ALD of AlN, GaN, and InN Films. Journal of Physical Chemistry C, 2022, 126, 5885-5895.	1.5	6
2	Understanding indium nitride thin film growth under ALD conditions by atomic scale modelling: From the bulk to the In-rich layer. Applied Surface Science, 2022, 592, 153290.	3.1	5
3	Controlled CVD Growth of Highly ⟠111⟠©-Oriented 3C-SiC. Journal of Physical Chemistry C, 2022, 126, 9918-9925.	1.5	8
4	Synthesis and Thermal Study of Hexacoordinated Aluminum(III) Triazenides for Use in Atomic Layer Deposition. Inorganic Chemistry, 2021, 60, 4578-4587.	1.9	8
5	Hexacoordinated Gallium(III) Triazenide Precursor for Epitaxial Gallium Nitride by Atomic Layer Deposition. Chemistry of Materials, 2021, 33, 3266-3275.	3.2	15
6	Formation of porous ice frameworks at room temperature. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	7
7	Synthesis, Characterization, and Thermal Study of Divalent Germanium, Tin, and Lead Triazenides as Potential Vapor Deposition Precursors. Inorganic Chemistry, 2021, 60, 12759-12765.	1.9	10
8	Unprecedented differences in the diamond nucleation density between carbon- and silicon-faces of 4H-silicon carbides. Chinese Chemical Letters, 2020, 31, 2013-2018.	4.8	3
9	Kinetic modeling of ammonia decomposition at chemical vapor deposition conditions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	13
10	Reduction of Carbon Impurities in Aluminum Nitride from Time-Resolved Chemical Vapor Deposition Using Trimethylaluminum. Journal of Physical Chemistry C, 2020, 124, 14176-14181.	1.5	9
11	<i>In Situ</i> Activation of an Indium(III) Triazenide Precursor for Epitaxial Growth of Indium Nitride by Atomic Layer Deposition. Chemistry of Materials, 2020, 32, 4481-4489.	3.2	26
12	A Systematic Method for Predictive <i>In Silico</i> Chemical Vapor Deposition. Journal of Physical Chemistry C, 2020, 124, 7725-7736.	1.5	10
13	Perspectiveâ€"Current Understanding of the Halogenated Deposition Chemistry for Chemical Vapor Deposition of SiC. ECS Journal of Solid State Science and Technology, 2020, 9, 104006.	0.9	2
14	The Endocyclic Carbon Substituent of Guanidinate and Amidinate Precursors Controlling Atomic Layer Deposition of InN Films. Journal of Physical Chemistry C, 2019, 123, 25691-25700.	1.5	19
15	An ultralow-density porous ice with the largest internal cavity identified in the water phase diagram. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12684-12691.	3. 3	16
16	Methylamines as Nitrogen Precursors in Chemical Vapor Deposition of Gallium Nitride. Journal of Physical Chemistry C, 2019, 123, 6701-6710.	1.5	5
17	Clathrate ice sL: a new crystalline phase of ice with ultralow density predicted by first-principles phase diagram computations. Physical Chemistry Chemical Physics, 2018, 20, 8333-8340.	1.3	23
18	Time evolution of the CO2 hydrogenation to fuels over Cu-Zr-SBA-15 catalysts. Journal of Catalysis, 2018, 362, 55-64.	3.1	19

#	Article	IF	CITATIONS
19	Growth Mechanism of SiC CVD: Surface Etching by H ₂ , H Atoms, and HCl. Journal of Physical Chemistry A, 2018, 122, 2503-2512.	1.1	13
20	Growth Mechanism of SiC Chemical Vapor Deposition: Adsorption and Surface Reactions of Active Si Species. Journal of Physical Chemistry C, 2018, 122, 648-661.	1.5	18
21	Thermal study of an indium trisguanidinate as a possible indium nitride precursor. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	3
22	Nucleation of titanium nanoparticles in an oxygen-starved environment. II: theory. Journal Physics D: Applied Physics, 2018, 51, 455202.	1.3	4
23	On the work function and the charging of small (râ‰\$ nm) nanoparticles in plasmas. Physics of Plasmas, 2017, 24, .	0.7	11
24	Silicon Chemistry in Fluorinated Chemical Vapor Deposition of Silicon Carbide. Journal of Physical Chemistry C, 2017, 121, 2711-2720.	1.5	14
25	Ab Initio Study of Growth Mechanism of 4H–SiC: Adsorption and Surface Reaction of C ₂ H ₂ , C ₄ , CH ₄ , and CH ₃ . Journal of Physical Chemistry C, 2017, 121, 1249-1256.	1.5	22
26	Simulations of the thermodynamics and kinetics of NH 3 at the RuO 2 (110) surface. Surface Science, 2017, 656, 77-85.	0.8	4
27	Matching precursor kinetics to afford a more robust CVD chemistry: a case study of the C chemistry for silicon carbide using SiF ₄ as Si precursor. Journal of Materials Chemistry C, 2017, 5, 5818-5823.	2.7	7
28	Thermochemical Properties of Halides and Halohydrides of Silicon and Carbon. ECS Journal of Solid State Science and Technology, 2016, 5, P27-P35.	0.9	3
29	Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions. Chemical Reviews, 2016, 116, 7501-7528.	23.0	314
30	Raman and IR Spectra of Ice Ih and Ice XI with an Assessment of DFT Methods. Journal of Physical Chemistry B, 2016, 120, 11043-11051.	1.2	18
31	13C Chemical Shift in Natural Gas Hydrates from First-Principles Solid-State NMR Calculations. Journal of Physical Chemistry C, 2016, 120, 1130-1136.	1.5	6
32	A model for carbon incorporation from trimethyl gallium in chemical vapor deposition of gallium nitride. Journal of Materials Chemistry C, 2016, 4, 863-871.	2.7	19
33	Brominated Chemistry for Chemical Vapor Deposition of Electronic Grade SiC. Chemistry of Materials, 2015, 27, 793-801.	3.2	9
34	CH-Stretching Vibrational Trends in Natural Gas Hydrates Studied by Quantum-Chemical Computations. Journal of Physical Chemistry C, 2015, 119, 17084-17091.	1.5	20
35	Vibrational Study of SO _{<i>x</i>} Adsorption on Pt/SiO ₂ . Journal of Physical Chemistry C, 2014, 118, 29713-29723.	1.5	10
36	C–C Stretching Raman Spectra and Stabilities of Hydrocarbon Molecules in Natural Gas Hydrates: A Quantum Chemical Study. Journal of Physical Chemistry A, 2014, 118, 11641-11651.	1.1	27

#	Article	IF	Citations
37	Fingerprints in IR OH vibrational spectra of H2O clusters from different H-bond conformations by means of quantum-chemical computations. Journal of Molecular Modeling, 2014, 20, 2281.	0.8	12
38	On the change of preferential growth orientation in chemical vapor deposition of titanium carbide by aromatic hydrocarbon precursors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	3
39	Shortcomings of CVD modeling of SiC today. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	15
40	Adsorption and surface diffusion of silicon growth species in silicon carbide chemical vapour deposition processes studied by quantum-chemical computations. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	11
41	SiC-FET methanol sensors for process control and leakage detection. Sensors and Actuators B: Chemical, 2013, 187, 553-562.	4.0	8
42	A theoretical study of the electronic structure of GaN nanorods. International Journal of Quantum Chemistry, 2012, 112, 1796-1802.	1.0	2
43	Computational study of the catalytic effect of platinum on the decomposition of DNT. International Journal of Quantum Chemistry, 2012, 112, 1852-1858.	1.0	1
44	Development of SiC-FET methanol sensor. Sensors and Actuators B: Chemical, 2011, 160, 72-78.	4.0	19
45	Structures of the I-, II- and H-Methane Clathrates and the Iceâ^'Methane Clathrate Phase Transition from Quantum-Chemical Modeling with Force-Field Thermal Corrections. Journal of Physical Chemistry A, 2011, 115, 6169-6176.	1.1	61
46	The electronic structure and reflectivity of PEDOT:PSS from density functional theory. Chemical Physics, 2011, 384, 44-51.	0.9	102
47	Amorphous on the surface. Nature Materials, 2011, 10, 725-726.	13.3	4
48	SiC based Field Effect Transistor for H <inf>2</inf> S detection., 2011,,.		2
49	Computational studies of the stability of the (H2O)100 nanodrop. Computational and Theoretical Chemistry, 2010, 944, 163-167.	1.5	14
50	Reply to Soper et al.: Fluctuations in water around a bimodal distribution of local hydrogen-bonded structural motifs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, .	3.3	44
51	A theoretical study of water equilibria: The cluster distribution versus temperature and pressure for (H2O)n, n=1–60, and ice. Journal of Chemical Physics, 2009, 131, 134302.	1.2	57
52	The inhomogeneous structure of water at ambient conditions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15214-15218.	3.3	526
53	FET Gas-Sensing Mechanism, Experimental and Theoretical Studies. , 2009, , 1-27.		3
54	ZnO Nanoparticles Functionalized with Organic Acids: An Experimental and Quantum-Chemical Study. Journal of Physical Chemistry C, 2009, 113, 17332-17341.	1.5	54

#	Article	IF	CITATIONS
55	Surface Effects and Quantum Confinement in Nanosized GaN Clusters: Theoretical Predictions. Journal of Physical Chemistry C, 2008, 112, 13516-13523.	1.5	27
56	Quantum-chemical investigations of phenol and larger aromatic molecules at the TiO ₂ anatase (101) surface. Journal of Physics: Conference Series, 2008, 117, 012020.	0.3	9
57	Dye-Sensitization of the TiO ₂ Rutile (110) Surface by Perylene Dyes:  Quantum-Chemical Periodic B3LYP Computations. Journal of Physical Chemistry C, 2007, 111, 12116-12123.	1.5	84
58	Theoretical IR Spectra for Water Clusters (H2O)n (n = $6\hat{a}^2$ 22, 28, 30) and Identification of Spectral Contributions from Different H-Bond Conformations in Gaseous and Liquid Water. Journal of Physical Chemistry A, 2006, 110, 13388-13393.	1.1	113
59	Towards Biocompatibility of RE2O3 Nanocrystals â^ Water and Organic Molecules Chemisorbed on Gd2O3 and Y2O3 Nanocrystals Studied by Quantum-Chemical Computations. Nano Letters, 2006, 6, 2004-2008.	4.5	26
60	The local structure of protonated water from x-ray absorption and density functional theory. Journal of Chemical Physics, 2006, 124, 194508.	1.2	49
61	Metal Oxide Nanoparticles as Novel Gate Materials for Field-Effect Gas Sensors. Materials and Manufacturing Processes, 2006, 21, 275-278.	2.7	4
62	On the stability of dense versus cage-shaped water clusters: Quantum-chemical investigations of zero-point energies, free energies, basis-set effects and IR spectra of (H2O)12 and (H2O)20. Chemical Physics Letters, 2006, 418, 361-367.	1.2	49
63	IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles. Journal of Colloid and Interface Science, 2006, 296, 71-78.	5.0	199
64	Nanocrystalline ruthenium oxide and ruthenium in sensing applications – an experimental and theoretical study. Journal of Nanoparticle Research, 2006, 8, 899-910.	0.8	43
65	Hydrogen bond topology and the ice VII/VIII and Ih/XI proton ordering phase transitions. Physical Review E, 2006, 73, 056113.	0.8	59
66	Phosphonic acid adsorption at the TiO2 anatase (101) surface investigated by periodic hybrid HF-DFT computations. Surface Science, 2005, 582, 49-60.	0.8	163
67	Surface interactions between Y2O3 nanocrystals and organic molecules—an experimental and quantum-chemical study. Surface Science, 2005, 592, 124-140.	0.8	33
68	Anchor group influence on molecule–metal oxide interfaces: Periodic hybrid DFT study of pyridine bound to TiO2 via carboxylic and phosphonic acid. Chemical Physics Letters, 2005, 415, 375-380.	1.2	137
69	Nanoparticles for long-term stable, more selective MISiCFET gas sensors. Sensors and Actuators B: Chemical, 2005, 107, 831-838.	4.0	18
70	Comment on "Energetics of Hydrogen Bond Network Rearrangements in Liquid Water". Science, 2005, 308, 793a-793a.	6.0	90
71	Hydrogen-Bond Topology and the IceVII/VIIIand IceIh/XIProton-Ordering Phase Transitions. Physical Review Letters, 2005, 94, 135701.	2.9	86
72	A theoretical study of water clusters: the relation between hydrogen-bond topology and interaction energy from quantum-chemical computations for clusters with up to 22 molecules. Physical Chemistry Chemical Physics, 2005, 7, 1905-1911.	1.3	99

#	Article	IF	CITATIONS
73	The electronic structure of free water clusters probed by Auger electron spectroscopy. Journal of Chemical Physics, 2005, 123, 054310.	1.2	80
74	An investigation of H-atom positions in sulfuric acid crystal structures. Acta Crystallographica Section B: Structural Science, 2004, 60, 179-183.	1.8	11
75	The Structure of the First Coordination Shell in Liquid Water. Science, 2004, 304, 995-999.	6.0	1,287
76	Quantum-Chemical and Force-Field Investigations of Ice Ih:Â Computation of Proton-Ordered Structures and Prediction of Their Lattice Energies. Journal of Physical Chemistry B, 2004, 108, 15856-15864.	1,2	97
77	Effects from Hydrogen Bonds on Water Structure in $(H3O)2[Mo6Cl8X6]\tilde{A}$ —yH2O X: Cl $(y = 7)$, Br $(y = 6)$, or l $(y = 6)$ ChemInform, 2003, 34, no-no.	0.1	O
78	Full Dimensional Quantum Calculations of Vibrational Energies of H5O+2 ChemInform, 2003, 34, no.	0.1	0
79	Short H-bonds and spontaneous self-dissociation in (H2O)20: Effects of H-bond topology. Journal of Chemical Physics, 2003, 118, 3583-3588.	1.2	83
80	Full Dimensional Quantum Calculations of Vibrational Energies of H5O2+. Journal of Physical Chemistry A, 2003, 107, 7142-7151.	1.1	45
81	Quantum-chemical studies of metal oxides for photoelectrochemical applications. Advances in Quantum Chemistry, 2002, 41, 203-263.	0.4	44
82	Spectroscopic probing of local hydrogen-bonding structures in liquid water. Journal of Physics Condensed Matter, 2002, 14, L213-L219.	0.7	262
83	PES Studies of Ru(dcbpyH2)2(NCS)2Adsorption on Nanostructured ZnO for Solar Cell Applications. Journal of Physical Chemistry B, 2002, 106, 10102-10107.	1.2	106
84	Effects from hydrogen bonds on water structure in (H3O)2[Mo6Cl8X6] \hat{A} ·yH2O X=Cl (y=7), Br (y=6), or I (y=6). Solid State Sciences, 2002, 4, 1017-1022.	1.5	17
85	Quantum chemical prediction of the adsorption conformations and dynamics at HCOOH-covered ZnO(1010) surfaces. International Journal of Quantum Chemistry, 2002, 89, 172-180.	1.0	41
86	Electronic interactions between aromatic adsorbates and metal oxide substrates calculated from first principles. Chemical Physics Letters, 2002, 364, 469-474.	1.2	60
87	On the use of graph invariants for efficiently generating hydrogen bond topologies and predicting physical properties of water clusters and ice. Journal of Chemical Physics, 2001, 114, 2527-2540.	1.2	110
88	Electronic structure effects from hydrogen bonding in the liquid phase and in chemisorption: an integrated theory and experimental effort. Journal of Synchrotron Radiation, 2001, 8, 136-140.	1.0	7
89	Periodic Hartree–Fock study of the adsorption of formic acid on ZnO(1010). Chemical Physics Letters, 2000, 321, 302-308.	1.2	63
90	Topology versus temperature: Thermal behavior of H+(H2O)8 and H+(H2O)16. Journal of Chemical Physics, 2000, 112, 710-716.	1.2	42

#	Article	IF	CITATIONS
91	Structure and vibrational spectra of H[sup +](H[sub 2]O)[sub 8]: Is the excess proton in a symmetrical hydrogen bond?. Journal of Chemical Physics, 2000, 113, 5321.	1,2	47
92	Embedded-Cluster Study of Hydrogen Interaction with an Oxygen Vacancy at the Magnesium Oxide Surface. Journal of Physical Chemistry B, 1999, 103, 3872-3876.	1.2	42
93	Potential models for simulations of the solvated proton in water. Journal of Chemical Physics, 1998, 109, 5547-5564.	1,2	187
94	Graph Theoretical Generation and Analysis of Hydrogen-Bonded Structures with Applications to the Neutral and Protonated Water Cube and Dodecahedral Clusters. Journal of Physical Chemistry A, 1998, 102, 2824-2832.	1.1	182
95	Theoretical characterization of divacancies at the surface and in bulk MgO. Journal of Chemical Physics, 1998, 109, 10984-10995.	1.2	77
96	Li and Na Diffusion in TiO2 from Quantum Chemical Theory versus Electrochemical Experiment. Journal of the American Chemical Society, 1997, 119, 7374-7380.	6.6	220
97	A comparison of Hartree?Fock, MP2, and DFT results for the HCN dimer and crystal., 1996, 60, 767-778.		23
98	Potential energy surfaces and vibrational spectra of H5O2+ and larger hydrated proton complexes. International Journal of Quantum Chemistry, 1995, 56, 657-668.	1.0	89
99	On the role of electric fields for proton transfer in water. Solid State Ionics, 1995, 77, 34-42.	1.3	14
100	A study of vibrational modes in Na+beta -alumina by molecular dynamics simulation. Journal of Physics Condensed Matter, 1994, 6, 1319-1332.	0.7	13
101	Mechanical and molecular properties of ice VIII from crystalâ€orbital ab initio calculations. Journal of Chemical Physics, 1994, 100, 2128-2138.	1.2	61
102	Structural, vibrational and electronic properties of a crystalline hydrate from ab initio periodic Hartree–Fock calculations. Acta Crystallographica Section B: Structural Science, 1994, 50, 268-279.	1.8	47
103	Ab Initio Study of Cooperativity in Water Chains: Binding Energies and Anharmonic Frequencies. The Journal of Physical Chemistry, 1994, 98, 4271-4282.	2.9	123
104	Theoretical Simulation of OH and OD Stretching Bands of Isotopically Diluted HDO Molecules in Lithium Formate Solution. , 1994, , 251-254.		0
105	Theoretical simulation of OH and OD stretching bands of isotopically diluted HDO molecules in aqueous solution. Chemical Physics, 1993, 171, 189-201.	0.9	21
106	Anab initiostudy of the OH stretching frequencies in ice II, ice VIII, and ice IX. Journal of Chemical Physics, 1993, 99, 2917-2928.	1.2	28
107	Water molecules in different crystal surroundings: Vibrational O–H frequencies from ab initio calculations. Journal of Chemical Physics, 1992, 96, 9035-9045.	1,2	38
108	From Molecule to Cluster to Bulk: Water OH Vibrations in Different Surroundings. International Journal of Quantum Chemistry, 1992, 42, 1251-1270.	1.0	15

Lars OjamÃ**≅**

#	Article	IF	CITATION
109	The OH stretching frequency in LiClO4·3H2O(s) from ab initio and model potential calculations. Chemical Physics, 1992, 161, 87-98.	0.9	5
110	The OH stretching frequency in liquid water simulations: the classical error. Chemical Physics Letters, 1992, 191, 500-506.	1.2	36
111	Simulation of band widths in liquid water spectra. The breakdown of the frozen-field approximation. Chemical Physics Letters, 1992, 195, 97-103.	1.2	43
112	Disorder dynamics in solid 9â€hydroxyphenalenone. Journal of Chemical Physics, 1991, 95, 2696-2701.	1.2	3
113	Revisiting the Thermochemical Database of Si-C-H System Related to SiC CVD Modeling. Materials Science Forum, 0, 778-780, 175-178.	0.3	1