
Steven Gg Maere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4952861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics, 2005, 21, 3448-3449.	1.8	3,901
2	Integration of biological networks and gene expression data using Cytoscape. Nature Protocols, 2007, 2, 2366-2382.	5.5	2,275
3	The evolutionary significance of ancient genome duplications. Nature Reviews Genetics, 2009, 10, 725-732.	7.7	919
4	Modeling gene and genome duplications in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5454-5459.	3.3	850
5	Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts. Cell, 2016, 166, 1397-1410.e16.	13.5	580
6	Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5737-5742.	3.3	552
7	Genome duplication and the origin of angiosperms. Trends in Ecology and Evolution, 2005, 20, 591-597.	4.2	483
8	Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nature Plants, 2018, 4, 460-472.	4.7	391
9	Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous–Paleogene boundary. Genome Research, 2014, 24, 1334-1347.	2.4	381
10	Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2898-2903.	3.3	351
11	The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biology, 2006, 7, R43.	13.9	332
12	Targeted interactomics reveals a complex core cell cycle machinery in <i>Arabidopsis thaliana</i> . Molecular Systems Biology, 2010, 6, 397.	3.2	315
13	The TPLATE Adaptor Complex Drives Clathrin-Mediated Endocytosis in Plants. Cell, 2014, 156, 691-704.	13.5	238
14	Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms. Plant Cell, 2016, 28, 326-344.	3.1	202
15	Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science, 2020, 370, .	6.0	173
16	Reconstruction of Ancestral Metabolic Enzymes Reveals Molecular Mechanisms Underlying Evolutionary Innovation through Gene Duplication. PLoS Biology, 2012, 10, e1001446.	2.6	170
17	The Arabidopsis thaliana Homolog of Yeast BRE1 Has a Function in Cell Cycle Regulation during Early Leaf and Root Growth. Plant Cell, 2007, 19, 417-432.	3.1	168
18	Nonrandom divergence of gene expression following gene and genome duplications in the flowering plant Arabidopsis thaliana. Genome Biology, 2006, 7, R13.	13.9	163

STEVEN GG MAERE

#	Article	IF	CITATIONS
19	Inference of Genome Duplications from Age Distributions Revisited. Molecular Biology and Evolution, 2013, 30, 177-190.	3.5	145
20	Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130353.	1.8	141
21	A conserved core of PCD indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiology, 2015, 169, pp.00769.2015.	2.3	141
22	Gamma Paleohexaploidy in the Stem Lineage of Core Eudicots: Significance for MADS-Box Gene and Species Diversification. Molecular Biology and Evolution, 2012, 29, 3793-3806.	3.5	127
23	Expansive Evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE Gene Family in Arabidopsis Â. Plant Physiology, 2012, 160, 884-896.	2.3	120
24	A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation. Plant Cell, 2018, 30, 2330-2351.	3.1	107
25	Origins, evolution, domestication and diversity of Saccharomyces beer yeasts. Current Opinion in Biotechnology, 2018, 49, 148-155.	3.3	104
26	Leaf Growth Response to Mild Drought: Natural Variation in Arabidopsis Sheds Light on Trait Architecture. Plant Cell, 2016, 28, 2417-2434.	3.1	83
27	Interspecific hybridization facilitates niche adaptation in beer yeast. Nature Ecology and Evolution, 2019, 3, 1562-1575.	3.4	83
28	Reciprocally Retained Genes in the Angiosperm Lineage Show the Hallmarks of Dosage Balance Sensitivity. Plant Cell, 2017, 29, 2766-2785.	3.1	81
29	The reduction in maize leaf growth under mild drought affects the transition between cell division and cell expansion and cannot be restored by elevated gibberellic acid levels. Plant Biotechnology Journal, 2018, 16, 615-627.	4.1	73
30	A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications, 2015, 6, 8821.	5.8	70
31	2R or not 2R is not the question anymore. Nature Reviews Genetics, 2010, 11, 166-166.	7.7	53
32	Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize RIL population. Genome Biology, 2015, 16, 168.	3.8	52
33	Predicting Gene Function from Uncontrolled Expression Variation among Individual Wild-Type <i>Arabidopsis</i> Plants. Plant Cell, 2013, 25, 2865-2877.	3.1	50
34	Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network. Plant Physiology, 2016, 170, 1848-1867.	2.3	49
35	The Origin of Floral Organ Identity Quartets. Plant Cell, 2017, 29, 229-242.	3.1	44
36	PiNGO: a Cytoscape plugin to find candidate genes in biological networks. Bioinformatics, 2011, 27, 1030-1031.	1.8	41

STEVEN GG MAERE

#	Article	IF	CITATIONS
37	Validating module network learning algorithms using simulated data. BMC Bioinformatics, 2007, 8, S5.	1.2	34
38	Significance and Biological Consequences of Polyploidization in Land Plant Evolution. , 2013, , 277-293.		34
39	Endoreplication as a potential driver of cell wall modifications. Current Opinion in Plant Biology, 2019, 51, 58-65.	3.5	34
40	Proximal Hyperspectral Imaging Detects Diurnal and Drought-Induced Changes in Maize Physiology. Frontiers in Plant Science, 2021, 12, 640914.	1.7	25
41	Using singleâ€plantâ€omics in the field to link maize genes to functions and phenotypes. Molecular Systems Biology, 2020, 16, e9667.	3.2	22
42	<i>ksrates</i> : positioning whole-genome duplications relative to speciation events in <i>K</i> S distributions. Bioinformatics, 2022, 38, 530-532.	1.8	19
43	Drought affects the rate and duration of organ growth but not inter-organ growth coordination. Plant Physiology, 2021, 186, 1336-1353.	2.3	18
44	Extracting expression modules from perturbational gene expression compendia. BMC Systems Biology, 2008, 2, 33.	3.0	16
45	The Apicomplexa-specific glucosamine-6-phosphate N-acetyltransferase gene family encodes a key enzyme for glycoconjugate synthesis with potential as therapeutic target. Scientific Reports, 2018, 8, 4005.	1.6	14
46	Modeling the evolution of molecular systems from a mechanistic perspective. Trends in Plant Science, 2014, 19, 292-303.	4.3	13
47	Open-ended on-board Evolutionary Robotics for robot swarms. , 2009, , .		10
48	Spatial Regression Models for Field Trials: A Comparative Study and New Ideas. Frontiers in Plant Science, 2022, 13, 858711.	1.7	5
49	Interview with Steven Maere. Trends in Plant Science, 2014, 19, 276-277.	4.3	0
50	Evolutionary Context Improves Regulatory Network Predictions. Cell Systems, 2017, 4, 478-479.	2.9	0