Qing Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4952440/publications.pdf Version: 2024-02-01

OINC ZHONC

#	Article	IF	CITATIONS
1	Machine learning for multi-omics data integration in cancer. IScience, 2022, 25, 103798.	1.9	78
2	Pan-cancer proteomic map of 949 human cell lines. Cancer Cell, 2022, 40, 835-849.e8.	7.7	52
3	PIONEER: Pipeline for Generating Highâ€Quality Spectral Libraries for DIAâ€MS Data. Current Protocols, 2021, 1, e69.	1.3	4
4	Improved identification and quantification of peptides in mass spectrometry data via chemical and random additive noise elimination (CRANE). Bioinformatics, 2021, 37, 4719-4726.	1.8	4
5	Strategies to enable large-scale proteomics for reproducible research. Nature Communications, 2020, 11, 3793.	5.8	75
6	Convergent network effects along the axis of gene expression during prostate cancer progression. Genome Biology, 2020, 21, 302.	3.8	17
7	Addressing the Challenges of Highâ€Throughput Cancer Tissue Proteomics for Clinical Application: ProCan. Proteomics, 2019, 19, e1900109.	1.3	25
8	Highâ€ŧhroughput proteomic analysis of <scp>FFPE</scp> tissue samples facilitates tumor stratification. Molecular Oncology, 2019, 13, 2305-2328.	2.1	100
9	Comparative analysis of mRNA and protein degradation in prostate tissues indicates high stability of proteins. Nature Communications, 2019, 10, 2524.	5.8	35
10	Quantitative Proteome Landscape of the NCI-60 Cancer Cell Lines. IScience, 2019, 21, 664-680.	1.9	52
11	Targeted next-generation-sequencing for reliable detection of targetable rearrangements in lung adenocarcinoma—a single center retrospective study. Pathology Research and Practice, 2018, 214, 572-578.	1.0	13
12	Comparison of the Proliferation and Differentiation Potential of Human Urine-, Placenta Decidua Basalis-, and Bone Marrow-Derived Stem Cells. Stem Cells International, 2018, 2018, 1-11.	1.2	41
13	Multi-region proteome analysis quantifies spatial heterogeneity of prostate tissue biomarkers. Life Science Alliance, 2018, 1, e201800042.	1.3	51
14	Prevalence of hypertension and diabetes after exposure to extracorporeal shock-wave lithotripsy in patients with renal calculi: a retrospective non-randomized data analysis. International Urology and Nephrology, 2018, 50, 1227-1233.	0.6	4
15	Multi-laboratory proficiency testing of clinical cancer genomic profiling by next-generation sequencing. Pathology Research and Practice, 2018, 214, 957-963.	1.0	11
16	Application of Nanosecond Laser Photolysis Protein Footprinting to Study EGFR Activation by EGF in Cells. Journal of Proteome Research, 2017, 16, 2282-2293.	1.8	21
17	MP62-11 EXTRACORPOREAL SHOCK-WAVE LITHOTRIPSY (ESWL) FOR RENAL STONES IS ASSOCIATED WITH DECREASED KIDNEY FUNCTION AFTER LONG TERM FOLLOW-UP. Journal of Urology, 2017, 197, .	0.2	0
18	A curated collection of tissue microarray images and clinical outcome data of prostate cancer patients. Scientific Data, 2017, 4, 170014.	2.4	21

QING ZHONG

#	Article	IF	CITATIONS
19	Value of postmortem studies in deceased neonatal and pediatric intensive care unit patients. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2017, 470, 217-223.	1.4	18
20	Prostate cancer–associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nature Medicine, 2017, 23, 1063-1071.	15.2	240
21	Disease grading of heterogeneous tissue using convolutional autoencoder. , 2017, , .		1
22	Cytology smears as excellent starting material for nextâ€generation sequencingâ€based molecular testing of patients with adenocarcinoma of the lung. Cancer Cytopathology, 2017, 125, 30-40.	1.4	47
23	Heterogeneity characterization of immunohistochemistry stained tissue using convolutional autoencoder. , 2017, , .		3
24	Detection of <i>CCNE1/URI</i> (19q12) amplification by <i>in situ</i> hybridisation is common in high grade and type II endometrial cancer. Oncotarget, 2017, 8, 14794-14805.	0.8	16
25	Computational Pathology. , 2017, , 263-279.		0
26	Abstract 5565: Multi-omic profiling of prostate cancer evolution in 39 patients. , 2017, , .		1
27	A computational framework for disease grading using protein signatures. , 2016, , .		7
28	Image-based computational quantification and visualization of genetic alterations and tumour heterogeneity. Scientific Reports, 2016, 6, 24146.	1.6	28
29	TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer. Cancer Cell, 2016, 29, 846-858.	7.7	228
30	Deciphering protein signatures using color, morphological, and topological analysis of immunohistochemically stained human tissues. Proceedings of SPIE, 2016, , .	0.8	2
31	MiR-99b-5p expression and response to tyrosine kinase inhibitor treatment in clear cell renal cell carcal cell carcinoma patients. Oncotarget, 2016, 7, 78433-78447.	0.8	45
32	Oxygen supply maps for hypoxic microenvironment visualization in prostate cancer. Journal of Pathology Informatics, 2016, 7, 3.	0.8	10
33	Positive fibroblast growth factor receptor 3 immunoreactivity is associated with low-grade non-invasive urothelial bladder cancer. Oncology Letters, 2015, 10, 2753-2760.	0.8	13
34	CD10 expression in 325 testicular germ cell tumours. Journal of Clinical Pathology, 2015, 68, 400-403.	1.0	0
35	Connexin 43 expression predicts poor progression-free survival in patients with non-muscle invasive urothelial bladder cancer. Journal of Clinical Pathology, 2015, 68, 819-824.	1.0	34
36	A novel germline mutation of PDGFR-Î ² might be associated with clinical response of colorectal cancer to regorafenib. Annals of Oncology, 2015, 26, 246-248.	0.6	8

QING ZHONG

#	Article	IF	CITATIONS
37	<scp>KPNA2</scp> is overexpressed in human and mouse endometrial cancers and promotes cellular proliferation. Journal of Pathology, 2014, 234, 239-252.	2.1	23
38	Modelling of a genetically diverse evolution of Systemic Mastocytosis with Chronic Myelomonocytic Leukemia (SM-CMML) by Next Generation Sequencing. Experimental Hematology and Oncology, 2014, 3, 18.	2.0	5
39	Unsupervised modeling of cell morphology dynamics for time-lapse microscopy. Nature Methods, 2012, 9, 711-713.	9.0	81