
Ruiyong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4952412/publications.pdf Version: 2024-02-01

RUIVONC CHEN

#	Article	IF	CITATIONS
1	High-performance protonic ceramic fuel cell cathode using protophilic mixed ion and electron conducting material. Journal of Materials Chemistry A, 2022, 10, 2559-2566.	10.3	25
2	Enhanced Longâ€Term Cathode Stability by Tuning Interfacial Nanocomposite for Intermediate Temperature Solid Oxide Fuel Cells. Advanced Materials Interfaces, 2022, 9, .	3.7	3
3	Cation Disorder and Large Tetragonal Supercell Ordering in the Li-Rich Argyrodite Li ₇ Zn _{0.5} SiS ₆ . Chemistry of Materials, 2022, 34, 4073-4087.	6.7	3
4	Polymorph of LiAlP ₂ O ₇ : Combined Computational, Synthetic, Crystallographic, and Ionic Conductivity Study. Inorganic Chemistry, 2021, 60, 14083-14095.	4.0	7
5	Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry. Nature Communications, 2021, 12, 5561.	12.8	32
6	Extended Condensed Ultraphosphate Frameworks with Monovalent Ions Combine Lithium Mobility with High Computed Electrochemical Stability. Journal of the American Chemical Society, 2021, 143, 18216-18232.	13.7	7
7	An "interaction-mediating―strategy towards enhanced solubility and redox properties of organics for aqueous flow batteries. Nano Energy, 2020, 69, 104464.	16.0	29
8	Imidazolium cation enabled reversibility of a hydroquinone derivative for designing aqueous redox electrolytes. Sustainable Energy and Fuels, 2020, 4, 2998-3005.	4.9	13
9	Charge separation and strong adsorption-enhanced MoO3 visible light photocatalytic performance. Journal of Materials Science, 2020, 55, 5808-5822.	3.7	33
10	Redox flow batteries for energy storage: Recent advances in using organic active materials. Current Opinion in Electrochemistry, 2020, 21, 40-45.	4.8	31
11	A Comparative Review of Electrolytes for Organicâ€Materialâ€Based Energyâ€Storage Devices Employing Solid Electrodes and Redox Fluids. ChemSusChem, 2020, 13, 2205-2219.	6.8	64
12	Effect of Molecular Structure and Coordinating Ions on the Solubility and Electrochemical Behavior of Quinone Derivatives for Aqueous Redox Flow Batteries. Journal of the Electrochemical Society, 2020, 167, 160502.	2.9	8
13	Enhanced reaction kinetics of an aqueous Zn–Fe hybrid flow battery by optimizing the supporting electrolytes. Journal of Energy Storage, 2019, 25, 100883.	8.1	16
14	First-principles calculations and experimental investigation on SnO2@ZnO heterojunction photocatalyst with enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2019, 553, 613-621.	9.4	67
15	Unlocking Simultaneously the Temperature and Electrochemical Windows of Aqueous Phthalocyanine Electrolytes. ACS Applied Energy Materials, 2019, 2, 3773-3779.	5.1	32
16	Shifting redox potential of nitroxyl radical by introducing an imidazolium substituent and its use in aqueous flow batteries. Journal of Power Sources, 2019, 418, 11-16.	7.8	44
17	Toward Highâ€Voltage, Energyâ€Đense, and Durable Aqueous Organic Redox Flow Batteries: Role of the Supporting Electrolytes. ChemElectroChem, 2019, 6, 603-612.	3.4	41
18	Ionic Liquids-Promoted Utilization of Redox-Active Organic Materials for Flow Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0

RUIYONG CHEN

#	Article	IF	CITATIONS
19	Emerging Investigators in Electrochemical Energy Conversion and Storage 2018. Journal of Electrochemical Energy Conversion and Storage, 2018, 15, .	2.1	0
20	"Water-in-ionic liquid―solutions towards wide electrochemical stability windows for aqueous rechargeable batteries. Electrochimica Acta, 2018, 263, 47-52.	5.2	43
21	Novel SnO2@ZnO hierarchical nanostructures for highly sensitive and selective NO2 gas sensing. Sensors and Actuators B: Chemical, 2018, 257, 714-727.	7.8	157
22	Redox Flow Batteries for Energy Storage: A Technology Review. Journal of Electrochemical Energy Conversion and Storage, 2018, 15, .	2.1	123
23	Highâ€Voltage and Lowâ€Temperature Aqueous Supercapacitor Enabled by "Waterâ€inâ€imidazolium Chlorid Electrolytes. ChemSusChem, 2018, 11, 3899-3904.	le― 6.8	37
24	Improved All-Vanadium Redox Flow Batteries using Catholyte Additive and a Cross-linked Methylated Polybenzimidazole Membrane. ACS Applied Energy Materials, 2018, 1, 6047-6055.	5.1	32
25	Microwave-assistant hydrothermal synthesis of SnO 2 @ZnO hierarchical nanostructures enhanced photocatalytic performance under visible light irradiation. Materials Research Bulletin, 2018, 106, 74-80.	5.2	38
26	Growth mechanism and photoluminescence property of hydrothermal oriented ZnO nanostructures evolving from nanorods to nanoplates. Journal of Alloys and Compounds, 2017, 718, 161-169.	5.5	53
27	One‣tep Cationic Grafting of 4â€Hydroxyâ€TEMPO and its Application in a Hybrid Redox Flow Battery with a Crosslinked PBI Membrane. ChemSusChem, 2017, 10, 3193-3197.	6.8	62
28	Advances in electrode materials for Li-based rechargeable batteries. RSC Advances, 2017, 7, 33789-33811.	3.6	30
29	Enhanced radar and infrared compatible stealth properties in hierarchical SnO2@ZnO nanostructures. Ceramics International, 2017, 43, 3443-3447.	4.8	52
30	Lithiation-driven structural transition of VO2F into disordered rock-salt LixVO2F. RSC Advances, 2016, 6, 65112-65118.	3.6	19
31	Ionic liquid-mediated aqueous redox flow batteries for high voltage applications. Electrochemistry Communications, 2016, 70, 56-59.	4.7	48
32	Highâ€Performance Lowâ€Temperature Li ⁺ Intercalation in Disordered Rockâ€Salt Li–Cr–V Oxyfluorides. ChemElectroChem, 2016, 3, 892-895.	3.4	32
33	Identifying the redox activity of cation-disordered Li–Fe–V–Ti oxide cathodes for Li-ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 7695-7701.	2.8	25
34	Li ⁺ intercalation in isostructural Li ₂ VO ₃ and Li ₂ VO ₂ F with O ^{2â~} and mixed O ^{2â~} /F ^{â~} anions. Physical Chemistry Chemical Physics, 2015, 17, 17288-17295.	2.8	67
35	Improved Voltage and Cycling for Li ⁺ Intercalation in Highâ€Capacity Disordered Oxyfluoride Cathodes. Advanced Science, 2015, 2, 1500128.	11.2	56
36	Disordered Lithiumâ€Rich Oxyfluoride as a Stable Host for Enhanced Li ⁺ Intercalation Storage. Advanced Energy Materials, 2015, 5, 1401814.	19.5	162

RUIYONG CHEN

#	Article	IF	CITATIONS
37	Carbon-Nanofibers Encapsulated Metal Oxide Nanocomposite and Its Application as Conversion Anode Material for Lithium Ion Batteries. ECS Transactions, 2015, 64, 155-164.	0.5	1
38	Nanoscale spinel LiFeTiO ₄ for intercalation pseudocapacitive Li ⁺ storage. Physical Chemistry Chemical Physics, 2015, 17, 1482-1488.	2.8	35
39	(De)lithiation-Induced Phase Transitions of LiMTiO4 Spinels. ECS Transactions, 2014, 61, 19-28.	0.5	1
40	A facile synthesis of encapsulated CoFe2O4 into carbon nanofibres and its application as conversion anodes for lithium ion batteries. Journal of Power Sources, 2014, 260, 205-210.	7.8	55
41	Reversible Li ⁺ Storage in a LiMnTiO ₄ Spinel and Its Structural Transition Mechanisms. Journal of Physical Chemistry C, 2014, 118, 12608-12616.	3.1	37
42	Anodic Electrocatalytic Coatings for Electrolytic Chlorine Production: A Review. Zeitschrift Fur Physikalische Chemie, 2013, 227, 651-666.	2.8	41
43	Structural Evolution of Li ₂ Fe _{1-<i>y</i>} Mn _{<i>y</i>} SiO ₄ (<i>y</i> = 0, 0.2, 0.5, 1) Cathode Materials for Li-Ion Batteries upon Electrochemical Cycling. Journal of Physical Chemistry C, 2013. 117. 884-893.	3.1	56
44	Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction. Physical Chemistry Chemical Physics, 2012, 14, 7392.	2.8	70
45	Wavelet analysis of chlorine bubble evolution on electrodes with different surface morphologies. Electrochemistry Communications, 2012, 22, 16-20.	4.7	16
46	In situ Supported Nanoscale Ru _{<i>x</i>} Ti _{1â^'<i>x</i>} O ₂ on Anatase TiO ₂ with Improved Electroactivity. Chemistry of Materials, 2010, 22, 6215-6217.	6.7	20
47	Redox Flow Batteries: Fundamentals and Applications. , 0, , .		27