## Peter Jahns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4952353/publications.pdf Version: 2024-02-01



DETED IAHNS

| #  | Article                                                                                                                                                                                                                                                                                | lF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica Et<br>Biophysica Acta - Bioenergetics, 2012, 1817, 182-193.                                                                                                                           | 1.0  | 867       |
| 2  | Mechanism and regulation of the violaxanthin cycle: The role of antenna proteins and membrane lipids. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 3-14.                                                                                                                 | 1.0  | 331       |
| 3  | lon antiport accelerates photosynthetic acclimation in fluctuating light environments. Nature<br>Communications, 2014, 5, 5439.                                                                                                                                                        | 12.8 | 205       |
| 4  | PGR5-PGRL1-Dependent Cyclic Electron Transport Modulates Linear Electron Transport Rate in<br>Arabidopsis thaliana. Molecular Plant, 2016, 9, 271-288.                                                                                                                                 | 8.3  | 119       |
| 5  | Mutants for photosystem I subunit D ofArabidopsis thaliana: effects on photosynthesis, photosystem I stability and expression of nuclear genes for chloroplast functions. Plant Journal, 2004, 37, 839-852.                                                                            | 5.7  | 117       |
| 6  | PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Nature Plants, 2016, 2, 15225.                                                                                                                                                                      | 9.3  | 105       |
| 7  | Photosystem II Subunit PsbS Is Involved in the Induction of LHCSR Protein-dependent Energy<br>Dissipation in Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2016, 291, 17478-17487.                                                                                       | 3.4  | 100       |
| 8  | Cytochrome b6f mutation specifically affects thermal dissipation of absorbed light energy in<br>Arabidopsis. Plant Journal, 2001, 28, 351-359.                                                                                                                                         | 5.7  | 98        |
| 9  | Knock-out of the plastid ribosomal protein L11 in Arabidopsis: effects on mRNA translation and photosynthesis. Plant Journal, 2001, 27, 179-189.                                                                                                                                       | 5.7  | 90        |
| 10 | Plant Growth under Natural Light Conditions Provides Highly Flexible Short-Term Acclimation<br>Properties toward High Light Stress. Frontiers in Plant Science, 2017, 8, 681.                                                                                                          | 3.6  | 82        |
| 11 | Tissue-Specific Accumulation and Regulation of Zeaxanthin Epoxidase in Arabidopsis Reflect the<br>Multiple Functions of the Enzyme in Plastids. Plant and Cell Physiology, 2015, 56, 346-357.                                                                                          | 3.1  | 70        |
| 12 | The Transiently Generated Nonphotochemical Quenching of Excitation Energy in Arabidopsis Leaves Is<br>Modulated by Zeaxanthin. Plant Physiology, 2007, 143, 1861-1870.                                                                                                                 | 4.8  | 62        |
| 13 | Envelope K <sup>+</sup> /H <sup>+</sup> Antiporters AtKEA1 and AtKEA2 Function in Plastid<br>Development. Plant Physiology, 2016, 172, 441-449.                                                                                                                                        | 4.8  | 58        |
| 14 | Single point mutation in the Rieske iron-sulfur subunit of cytochromeb6/fleads to an altered pH<br>dependence of plastoquinol oxidation inArabidopsis. FEBS Letters, 2002, 519, 99-102.                                                                                                | 2.8  | 53        |
| 15 | The Dynamics of Energy Dissipation and Xanthophyll Conversion in Arabidopsis Indicate an Indirect<br>Photoprotective Role of Zeaxanthin in Slowly Inducible and Relaxing Components of<br>Non-photochemical Quenching of Excitation Energy. Frontiers in Plant Science, 2017, 8, 2094. | 3.6  | 52        |
| 16 | Comparison of sister species identifies factors underpinning plastid compatibility in green sea slugs.<br>Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142519.                                                                                                | 2.6  | 44        |
| 17 | Photoprotection in a monophyletic branch of chlorophyte algae is independent of energyâ€dependent<br>quenching (qE). New Phytologist, 2017, 214, 1132-1144.                                                                                                                            | 7.3  | 44        |
| 18 | CO2 availability rather than light and temperature determines growth and phenotypical responses in submerged Myriophyllum aquaticum. Aquatic Botany, 2013, 110, 31-37.                                                                                                                 | 1.6  | 40        |

Peter Jahns

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Arabidopsis Protein CONSERVED ONLY IN THE GREEN LINEAGE160 Promotes the Assembly of the Membranous Part of the Chloroplast ATP Synthase. Plant Physiology, 2014, 165, 207-226.        | 4.8 | 35        |
| 20 | H <sup>+</sup> Transport by K <sup>+</sup> EXCHANGE ANTIPORTER3 Promotes Photosynthesis and Growth in Chloroplast ATP Synthase Mutants. Plant Physiology, 2020, 182, 2126-2142.           | 4.8 | 32        |
| 21 | PsbS contributes to photoprotection in Chlamydomonas reinhardtii independently of energy dissipation. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148183.                  | 1.0 | 29        |
| 22 | European native Myriophyllum spicatum showed a higher \$\${ext{HCO}}_{3^{ - }\$\$ HCO 3 - use capacity than alien invasive Myriophyllum heterophyllum. Hydrobiologia, 2015, 746, 171-182. | 2.0 | 28        |
| 23 | Why It Is Time to Look Beyond Algal Genes in Photosynthetic Slugs. Genome Biology and Evolution, 2015, 7, 2602-2607.                                                                      | 2.5 | 28        |
| 24 | The Transiently Generated Nonphotochemical Quenching of Excitation Energy in Arabidopsis Leaves Is<br>Modulated by Zeaxanthin. Plant Physiology, 2007, 143, 1861-1870.                    | 4.8 | 23        |
| 25 | Mg deficiency induces photo-oxidative stress primarily by limiting CO2 assimilation and not by limiting photosynthetic light utilization. Plant Science, 2021, 302, 110751.               | 3.6 | 19        |
| 26 | Switching off photosynthesis. Communicative and Integrative Biology, 2014, 7, e28029.                                                                                                     | 1.4 | 18        |
| 27 | The Arabidopsis Protein CGLD11 Is Required for Chloroplast ATP Synthase Accumulation. Molecular Plant, 2016, 9, 885-899.                                                                  | 8.3 | 17        |
| 28 | Plastoglobular protein 18 is involved in chloroplast function and thylakoid formation. Journal of Experimental Botany, 2019, 70, 3981-3993.                                               | 4.8 | 17        |
| 29 | Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance. Plant Physiology, 2021, 186, 142-167.                                                 | 4.8 | 16        |
| 30 | The Arabidopsis Protein CGL20 Is Required for Plastid 50S Ribosome Biogenesis. Plant Physiology, 2020, 182, 1222-1238.                                                                    | 4.8 | 14        |
| 31 | Zeaxanthin Epoxidase Activity Is Downregulated by Hydrogen Peroxide. Plant and Cell Physiology, 2022, 63, 1091-1100.                                                                      | 3.1 | 13        |
| 32 | Introduction of the Carotenoid Biosynthesis α-Branch Into Synechocystis sp. PCC 6803 for Lutein<br>Production. Frontiers in Plant Science, 2021, 12, 699424.                              | 3.6 | 9         |