
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4951923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The quantitative genetics of the prevalence of infectious diseases: hidden genetic variation due to indirect genetic effects dominates heritable variation and response to selection. Genetics, 2022, 220, .	1.2	11
2	The PB1 gene from H9N2 avian influenza virus showed high compatibility and increased mutation rate after reassorting with a human H1N1 influenza virus. Virology Journal, 2022, 19, 20.	1.4	2
3	Molecular and Antigenic Characterization of Avian H9N2 Viruses in Southern China. Microbiology Spectrum, 2022, 10, e0082221.	1.2	17
4	Maternal-derived antibodies hinder the antibody response to H9N2 AIV inactivated vaccine in the field. Animal Diseases, 2022, 2, .	0.6	2
5	Why genetic selection to reduce the prevalence of infectious diseases is way more promising than currently believed. Genetics, 2021, 217, .	1.2	13
6	On the origin of the genetic variation in infectious disease prevalence: Genetic analysis of disease status versus infections for Digital Dermatitis in Dutch dairy cattle. Journal of Animal Breeding and Genetics, 2021, 138, 629-642.	0.8	1
7	Vaccination with inactivated virus against low pathogenic avian influenza subtype H9N2 does not prevent virus transmission in chickens. Journal of Virus Eradication, 2021, 7, 100055.	0.3	6
8	Spatial model of foot-and-mouth disease outbreak in an endemic area of Thailand. Preventive Veterinary Medicine, 2021, 195, 105468.	0.7	6
9	The SARS-CoV-2 Reproduction Number R0 in Cats. Viruses, 2021, 13, 2480.	1.5	9
10	Mathematical Quantification of Transmission in Experiments: FMDV Transmission in Pigs Can Be Blocked by Vaccination and Separation. Frontiers in Veterinary Science, 2020, 7, 540433.	0.9	1
11	Selection and antigenic characterization of immune-escape mutants of H7N2 low pathogenic avian influenza virus using homologous polyclonal sera. Virus Research, 2020, 290, 198188.	1.1	7
12	Effects of migration network configuration and migration synchrony on infection prevalence in geese. Journal of Theoretical Biology, 2020, 502, 110315.	0.8	5
13	Quantifying transmission of Mycobacterium avium subsp. paratuberculosis among group-housed dairy calves. Veterinary Research, 2019, 50, 60.	1.1	6
14	Virus Shedding of Avian Influenza in Poultry: A Systematic Review and Meta-Analysis. Viruses, 2019, 11, 812.	1.5	34
15	Genetic parameters and genomic breeding values for digital dermatitis in Holstein Friesian dairy cattle: host susceptibility, infectivity and the basic reproduction ratio. Genetics Selection Evolution, 2019, 51, 67.	1.2	10
16	Digital Dermatitis in dairy cattle: The contribution of different disease classes to transmission. Epidemics, 2018, 23, 76-84.	1.5	46
17	Derivation of the economic value of RO for macroparasitic diseases and application to sea lice in salmon. Genetics Selection Evolution, 2018, 50, 47.	1.2	5
18	Seroprevalence and risk factors of lumpy skin disease in Ethiopia. Preventive Veterinary Medicine, 2018, 160, 99-104.	0.7	14

#	Article	IF	CITATIONS
19	A New Model to Calibrate a Reference Standard for Bovine Tuberculin Purified Protein Derivative in the Target Species. Frontiers in Veterinary Science, 2018, 5, 232.	0.9	2
20	The intractable challenge of evaluating cattle vaccination as a control for bovine Tuberculosis. ELife, 2018, 7, .	2.8	8
21	A model to estimate effects of SNPs on host susceptibility and infectivity for an endemic infectious disease. Genetics Selection Evolution, 2017, 49, 53.	1.2	16
22	Transmission dynamics of extended-spectrum β-lactamase and AmpC β-lactamase-producing Escherichia coli in a broiler flock without antibiotic use. Preventive Veterinary Medicine, 2016, 131, 12-19.	0.7	43
23	Mutations in the haemagglutinin protein and their effect in transmission of highly pathogenic avian influenza (HPAI) H5N1 virus in sub-optimally vaccinated chickens. Vaccine, 2016, 34, 5512-5518.	1.7	7
24	Role of vaccination-induced immunity and antigenic distance in the transmission dynamics of highly pathogenic avian influenza H5N1. Journal of the Royal Society Interface, 2016, 13, 20150976.	1.5	14
25	Genetic analysis of infectious diseases: estimating gene effects for susceptibility and infectivity. Genetics Selection Evolution, 2015, 47, 85.	1.2	17
26	Quantification of transmission of foot-and-mouth disease virus caused by an environment contaminated with secretions and excretions from infected calves. Veterinary Research, 2015, 46, 43.	1.1	50
27	Role of the Environment in the Transmission of Antimicrobial Resistance to Humans: A Review. Environmental Science & Technology, 2015, 49, 11993-12004.	4.6	286
28	Optimising and Evaluating the Characteristics of a Multiple Antigen ELISA for Detection of Mycobacterium bovis Infection in a Badger Vaccine Field Trial. PLoS ONE, 2014, 9, e100139.	1.1	10
29	Small distances can keep bacteria at bay for days. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3556-3560.	3.3	18
30	Estimation of the transmission of foot-and-mouth disease virus from infected sheep to cattle. Veterinary Research, 2014, 45, 58.	1.1	24
31	Identification of factors associated with increased excretion of foot-and-mouth disease virus. Preventive Veterinary Medicine, 2014, 113, 23-33.	0.7	20
32	Airborne Microorganisms From Livestock Production Systems and Their Relation to Dust. Critical Reviews in Environmental Science and Technology, 2014, 44, 1071-1128.	6.6	79
33	Immune Escape Mutants of Highly Pathogenic Avian Influenza H5N1 Selected Using Polyclonal Sera: Identification of Key Amino Acids in the HA Protein. PLoS ONE, 2014, 9, e84628.	1.1	25
34	Effect of control strategies on the persistence of fish-borne zoonotic trematodes: A modelling approach. Aquaculture, 2013, 408-409, 106-112.	1.7	9
35	The importance of â€~neighbourhood' in the persistence of bovine tuberculosis in Irish cattle herds. Preventive Veterinary Medicine, 2013, 110, 346-355.	0.7	46
36	Assessing and controlling health risks from animal husbandry. Njas - Wageningen Journal of Life Sciences, 2013, 66, 7-14.	7.9	20

MART C M DE JONG

#	Article	IF	CITATIONS
37	Distribution of trematodes in snails in ponds at integrated small-scale aquaculture farms. Acta Tropica, 2013, 125, 276-281.	0.9	8
38	Survival of heterophyid metacercaria in common carp (Cyprinus carpio). Parasitology Research, 2013, 112, 2759-2762.	0.6	8
39	Effects of Temperature, Relative Humidity, Absolute Humidity, and Evaporation Potential on Survival of Airborne Gumboro Vaccine Virus. Applied and Environmental Microbiology, 2012, 78, 1048-1054.	1.4	42
40	Indel-II region deletion sizes in the white spot syndrome virus genome correlate with shrimp disease outbreaks in southern Vietnam. Diseases of Aquatic Organisms, 2012, 99, 153-162.	0.5	7
41	Transmission of a live Eimeria acervulina vaccine strain and response to infection in vaccinated and contact-vaccinated broilers. Vaccine, 2012, 30, 322-328.	1.7	8
42	Interaction effects between sender and receiver processes in indirect transmission of Campylobacter jejuni between broilers. BMC Veterinary Research, 2012, 8, 123.	0.7	5
43	Longitudinal study on transmission of MRSA CC398 within pig herds. BMC Veterinary Research, 2012, 8, 58.	0.7	48
44	Modelling the Wind-Borne Spread of Highly Pathogenic Avian Influenza Virus between Farms. PLoS ONE, 2012, 7, e31114.	1.1	62
45	Estimating the Per-Contact Probability of Infection by Highly Pathogenic Avian Influenza (H7N7) Virus during the 2003 Epidemic in The Netherlands. PLoS ONE, 2012, 7, e40929.	1.1	15
46	Higher attack rate of fish-borne trematodes (Heterophyidae) in common carp fingerlings (Cyprinus) Tj ETQq0 0	0 rgBT /Ov 0.6	verlock 10 Tf 5
47	Quantification of transmission of livestock-associated methicillin resistant Staphylococcus aureus in pigs. Veterinary Microbiology, 2012, 155, 381-388.	0.8	35
48	Oocyst output and transmission rates during successive infections with Eimeria acervulina in experimental broiler flocks. Veterinary Parasitology, 2012, 187, 63-71.	0.7	11
49	Mixed-genotype white spot syndrome virus infections of shrimp are inversely correlated with disease outbreaks in ponds. Journal of General Virology, 2011, 92, 675-680.	1.3	25
50	Transmission of white spot syndrome virus in improved-extensive and semi-intensive shrimp production systems: A molecular epidemiology study. Aquaculture, 2011, 313, 7-14.	1.7	26
51	Effect of fish size on transmission of fish-borne trematodes (Heterophyidae) to common carps (Cyprinus carpio) and implications for intervention. Aquaculture, 2011, 321, 179-184.	1.7	10
52	Investigation of the Efficiencies of Bioaerosol Samplers for Collecting Aerosolized Bacteria Using a Fluorescent Tracer. I: Effects of Non-sampling Processes on Bacterial Culturability. Aerosol Science and Technology, 2011, 45, 423-431.	1.5	25
53	Estimation of the Likelihood of Fecal–Oral HEV Transmission Among Pigs. Risk Analysis, 2011, 31, 940-950.	1.5	23
54	Transmission of methicillin resistant Staphylococcus aureus among pigs during transportation from farm to abattoir. Veterinary Journal, 2011, 189, 302-305.	0.6	42

#	Article	IF	CITATIONS
55	Trial design to estimate the effect of vaccination on tuberculosis incidence in badgers. Veterinary Microbiology, 2011, 151, 104-111.	0.8	42
56	Investigation of the Efficiencies of Bioaerosol Samplers for Collecting Aerosolized Bacteria Using a Fluorescent Tracer. II: Sampling Efficiency and Half-Life Time. Aerosol Science and Technology, 2011, 45, 432-442.	1.5	20
57	Use of Epidemiologic Models in the Control of Highly Pathogenic Avian Influenza. Avian Diseases, 2010, 54, 707-712.	0.4	16
58	Transmission risks and control of foot-and-mouth disease in The Netherlands: Spatial patterns. Epidemics, 2010, 2, 36-47.	1.5	51
59	Validation of diagnostic tests for detection of avian influenza in vaccinated chickens using Bayesian analysis. Vaccine, 2010, 28, 1771-1777.	1.7	5
60	Modelling the effectiveness and risks of vaccination strategies to control classical swine fever epidemics. Journal of the Royal Society Interface, 2009, 6, 849-861.	1.5	58
61	Back-calculation method shows that within-flock transmission of highly pathogenic avian influenza (H7N7) virus in the Netherlands is not influenced by housing risk factors. Preventive Veterinary Medicine, 2009, 88, 278-285.	0.7	44
62	The course of hepatitis E virus infection in pigs after contact-infection and intravenous inoculation. BMC Veterinary Research, 2009, 5, 7.	0.7	111
63	Quantifying foot-and-mouth disease virus transmission rates using published data. ALTEX: Alternatives To Animal Experimentation, 2009, 26, 52-54.	0.9	9
64	Local spread of classical swine fever upon virus introduction into The Netherlands: Mapping of areas at high risk. BMC Veterinary Research, 2008, 4, 9.	0.7	27
65	Transmission of highly pathogenic avian influenza H5N1 virus in Pekin ducks is significantly reduced by a genetically distant H5N2 vaccine. Virology, 2008, 382, 91-97.	1.1	64
66	Effect of H7N1 vaccination on highly pathogenic avian influenza H7N7 virus transmission in turkeys. Vaccine, 2008, 26, 6322-6328.	1.7	23
67	Estimation of hepatitis E virus transmission among pigs due to contact-exposure. Veterinary Research, 2008, 39, 40.	1.1	86
68	Risk Maps for the Spread of Highly Pathogenic Avian Influenza in Poultry. PLoS Computational Biology, 2007, 3, e71.	1.5	162
69	Variable effect of vaccination against highly pathogenic avian influenza (H7N7) virus on disease and transmission in pheasants and teals. Vaccine, 2007, 25, 8318-8325.	1.7	34
70	The local threshold for geographical spread of infectious diseases between farms. Preventive Veterinary Medicine, 2007, 82, 90-101.	0.7	34
71	Estimating the day of highly pathogenic avian influenza (H7N7) virus introduction into a poultry flock based on mortality data. Veterinary Research, 2007, 38, 493-504.	1.1	55
72	When can a veterinarian be expected to detect classical swine fever virus among breeding sows in a herd during an outbreak?. Preventive Veterinary Medicine, 2005, 67, 195-212.	0.7	22

#	Article	IF	CITATIONS
73	No foot-and-mouth disease virus transmission between individually housed calves. Veterinary Microbiology, 2004, 98, 29-36.	0.8	29
74	Comparison of the sensitivity of in vitro and in vivo tests for detection of the presence of a bovine viral diarrhoea virus type 1 strain. Veterinary Microbiology, 2004, 102, 131-140.	0.8	5
75	Avian Influenza A Virus (H7N7) Epidemic in The Netherlands in 2003: Course of the Epidemic and Effectiveness of Control Measures. Journal of Infectious Diseases, 2004, 190, 2088-2095.	1.9	251
76	Rapid selection of quinolone resistance in Campylobacter jejuni but not in Escherichia coli in individually housed broilers. Journal of Antimicrobial Chemotherapy, 2003, 52, 719-723.	1.3	60
77	Modelling transmission: mass action and beyond. Trends in Ecology and Evolution, 2002, 17, 64.	4.2	13
78	Modeling and Real-Time Prediction of Classical Swine Fever Epidemics. Biometrics, 2002, 58, 178-184.	0.8	20
79	Herd immunity after vaccination: how to quantify it and how to use it to halt disease. Vaccine, 2001, 19, 2722-2728.	1.7	26
80	Evaluating control strategies for outbreaks in BHV1-free areas using stochastic and spatial simulation. Preventive Veterinary Medicine, 2000, 44, 21-42.	0.7	18
81	Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity. Mathematical Biosciences, 2000, 165, 1-25.	0.9	75
82	Transmission of classical swine fever virus within herds during the 1997–1998 epidemic in The Netherlands. Preventive Veterinary Medicine, 1999, 42, 201-218.	0.7	53
83	Quantification of the transmission of classical swine fever virus between herds during the 1997–1998 epidemic in The Netherlands. Preventive Veterinary Medicine, 1999, 42, 219-234.	0.7	81
84	Evaluation of tests for detection of antibodies to Aujeszky's disease (pseudorabies) virus glycoprotein E in the target population. Veterinary Microbiology, 1997, 55, 107-111.	0.8	2
85	Rate of successful pseudorabies virus introductions in swine breeding herds in the southern Netherlands that participated in an area-wide vaccination programme. Preventive Veterinary Medicine, 1996, 27, 29-41.	0.7	12
86	Mathematical modelling in veterinary epidemiology: why model building is important. Preventive Veterinary Medicine, 1995, 25, 183-193.	0.7	96
87	Experimental quantification of vaccine-induced reduction in virus transmission. Vaccine, 1994, 12, 761-766.	1.7	176
88	A method to calculate—for computer-simulated infections—the threshold value, R0, that predicts whether or not the infection will spread. Preventive Veterinary Medicine, 1992, 12, 269-285.	0.7	33
89	Limits to runaway sexual selection: The wallflower paradox. Journal of Evolutionary Biology, 1991, 4, 637-655.	0.8	43
90	Should All Plants Recruit Bodyguards? Conditions for a Polymorphic ESS of Synomone Production in Plants. Oikos, 1988, 53, 247.	1.2	57

#	Article	IF	CITATIONS
91	A mechanistic simulation model for the movement and competition of bark beetle larvae (Coleoptera,) Tj ETQ	q1 1 9. 784	314 rgBT /Ove