Larysa Paniwnyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4951726/publications.pdf

Version: 2024-02-01

471371 377752 3,318 38 17 34 citations h-index g-index papers 41 41 41 3710 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 1996, 3, S253-S260.	3.8	830
2	Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrasonics Sonochemistry, 2001, 8, 137-142.	3.8	505
3	Effect of ultrasound treatment on particle size and molecular weight of whey proteins. Journal of Food Engineering, 2014, 121, 15-23.	2.7	297
4	Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrasonics Sonochemistry, 2004, 11, 261-265.	3.8	266
5	The extraction of rutin from flower buds of Sophora japonica. Ultrasonics Sonochemistry, 2001, 8, 299-301.	3.8	223
6	Power ultrasound in meat processing. Meat Science, 2015, 107, 86-93.	2.7	186
7	Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 2007, 81, 88-97.	2.7	181
8	Applications of ultrasound in processing of liquid foods: A review. Ultrasonics Sonochemistry, 2017, 38, 794-806.	3.8	136
9	The enhancement and scale up of the extraction of anti-oxidants from Rosmarinus officinalis using ultrasound. Ultrasonics Sonochemistry, 2009, 16, 287-292.	3.8	120
10	Thermodynamics, transport phenomena, and electrochemistry of external field-assisted nonthermal food technologies. Critical Reviews in Food Science and Nutrition, 2018, 58, 1832-1863.	5.4	101
11	Physicochemical and microbiological characteristics of beef treated with highâ€intensity ultrasound and stored at 4 °C. Journal of the Science of Food and Agriculture, 2015, 95, 2487-2493.	1.7	61
12	Ultrasound-mediated DNA transfer for bacteria. Nucleic Acids Research, 2007, 35, e129-e129.	6.5	60
13	Ultrasound-enhanced mass transfer in Halal compared with non-Halal chicken. Journal of the Science of Food and Agriculture, 2011, 91, 130-133.	1.7	43
14	Effect of ultrasound on the extraction of artemisinin from Artemisia annua. Industrial Crops and Products, 2013, 42, 595-600.	2.5	43
15	Does ultrasound equally improve the quality of beef? An insight into longissimus lumborum, infraspinatus and cleidooccipitalis. Meat Science, 2020, 160, 107963.	2.7	31
16	Three Pillars of Novel Nonthermal Food Technologies: Food Safety, Quality, and Environment. Journal of Food Quality, 2018, 2018, 1-18.	1.4	30
17	The progressive role of acoustic cavitation for non-invasive therapies, contrast imaging and blood-tumor permeability enhancement. Expert Opinion on Drug Delivery, 2016, 13, 1383-1396.	2.4	25
18	Ultrasound as a preservation technology. , 2003, , 303-337.		24

#	Article	IF	Citations
19	Ultrasound-assisted selective hydrogenation of C-5 acetylene alcohols with Lindlar catalysts. Ultrasonics Sonochemistry, 2015, 26, 445-451.	3.8	18
20	Physicochemical characteristics and shelf lifeÂof beef treated with highâ€intensity ultrasound. Journal of Food Processing and Preservation, 2021, 45, e15350.	0.9	14
21	The O-Alkylation of 5-Hydroxy Chromones. A Comparison of Two Non-Classical Techniques, PTC in the Absence of Solvent and Sonochemical Activation in Polar Aprotic Solvents. Synthetic Communications, 1990, 20, 3411-3420.	1.1	13
22	The Influence of Sonication on the Palladium-Catalyzed Dehydrogenation of Tetrahydronaphthalene. Journal of Catalysis, 1994, 147, 1-4.	3.1	12
23	Ultrasound for improving the preservation of chicken meat. Food Science and Technology, 2019, 39, 129-135.	0.8	12
24	NMR studies of some î-4-diene-rhodium(I) and main group metal derivatives of funtionally substituted cyclopentadienes. Journal of Organometallic Chemistry, 1989, 366, 223-243.	0.8	9
25	Application of Ultrasound. , 2014, , 271-291.		9
26	Controlling Emissions from Electroplating by the Application of Ultrasound. Environmental Science & Eamp; Technology, 2001, 35, 3375-3377.	4.6	8
27	Through hole plating of printed circuit boards using ultrasonically dispersed copper nanoparticles. Circuit World, 2010, 36, 9-13.	0.7	8
28	Overcoming T. gondii infection and intracellular protein nanocapsules as biomaterials for ultrasonically controlled drug release. Biomaterials Science, 2017, 5, 1944-1961.	2.6	8
29	Ultrasonic Surface Modification of Electronics Materials. Physics Procedia, 2010, 3, 1103-1108.	1.2	7
30	Sterically hindered phthalocyanines: solution–phase interactions with carbon monoxide. Journal of Materials Science, 2009, 44, 4246-4251.	1.7	6
31	Ultrasonic Food Processing. RSC Green Chemistry, 2010, , 387-414.	0.0	6
32	Initial studies to optimise the sonochemical surface modification of a high Tg laminate. Circuit World, 2012, 38, 124-129.	0.7	5
33	Examining the extraction of artemisinin from artemisia annua using ultrasound. AIP Conference Proceedings, 2012, , .	0.3	5
34	The use of a range of ultrasound frequencies to reduce colouration caused by dyes. Water Science and Technology, 2012, 66, 2251-2257.	1.2	4
35	The Use of Ultrasound as an Enhancement Aid to Food Extraction. , 2017, , 399-440.		4
36	Sterically hindered phthalocyanines: solid-phase interactions with carbon monoxide in matrix-entrapped thin functional films. Journal of Materials Science, 2009, 44, 5737-5742.	1.7	3

#	Article	IF	CITATIONS
37	Copper electrocrystallization on titanium electrodes: Controlled growth of copper nuclei using a potential step technique. Physics Procedia, 2010, 3, 111-115.	1.2	3
38	Potential Methods to Improve the Efficiency of Artemisinin Extraction from Artemisia annua. , 2014, , 125-137.		2