Shi-guo Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4951673/publications.pdf

Version: 2024-02-01

		159358	1	182168	
58	2,644 citations	30		51	
papers	citations	h-index		g-index	
59	59	59		3872	
37	33	33		3072	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Materials Today Bio, 2020, 5, 100035.	2.6	167
2	New insights into synergistic antimicrobial and antifouling cotton fabrics via dually finished with quaternary ammonium salt and zwitterionic sulfobetaine. Chemical Engineering Journal, 2018, 336, 123-132.	6.6	149
3	Durable Antibacterial and Nonfouling Cotton Textiles with Enhanced Comfort via Zwitterionic Sulfopropylbetaine Coating. Small, 2016, 12, 3516-3521.	5.2	145
4	Environmentally Friendly Antibacterial Cotton Textiles Finished with Siloxane Sulfopropylbetaine. ACS Applied Materials & Environmentally Friendly Antibacterial Cotton Textiles Finished with Siloxane Sulfopropylbetaine.	4.0	139
5	Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan. Carbohydrate Polymers, 2016, 143, 246-253.	5.1	122
6	Development of zwitterionic polyurethanes with multi-shape memory effects and self-healing properties. Journal of Materials Chemistry A, 2015, 3, 2924-2933.	5.2	114
7	Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt. Materials Science and Engineering C, 2016, 61, 79-84.	3.8	113
8	Rapid hemostatic and mild polyurethane-urea foam wound dressing for promoting wound healing. Materials Science and Engineering C, 2017, 71, 289-297.	3.8	95
9	Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties. Carbohydrate Polymers, 2018, 202, 246-257.	5.1	95
10	Synergistic antibacterial mechanism and coating application of copper/titanium dioxide nanoparticles. Chemical Engineering Journal, 2014, 256, 238-246.	6.6	94
11	Facile preparation and synergistic antibacterial effect of three-component Cu/TiO2/CS nanoparticles. Journal of Materials Chemistry, 2012, 22, 9092.	6.7	82
12	Flexible graphene electrothermal films made from electrochemically exfoliated graphite. Journal of Materials Science, 2016, 51, 1043-1051.	1.7	76
13	Insight into multifunctional polyester fabrics finished by one-step eco-friendly strategy. Chemical Engineering Journal, 2019, 358, 634-642.	6.6	75
14	Study of zwitterionic sulfopropylbetaine containing reactive siloxanes for application in antibacterial materials. Colloids and Surfaces B: Biointerfaces, 2011, 85, 323-329.	2.5	59
15	Progress and prospects in chitosan derivatives: Modification strategies and medical applications. Journal of Materials Science and Technology, 2021, 89, 209-224.	5. 6	49
16	Electrochemical biosensing platforms using poly-cyclodextrin and carbon nanotube composite. Biosensors and Bioelectronics, 2010, 26, 295-298.	5. 3	47
17	Delivery of Liposomes with Different Sizes to Mice Brain afterÂSonication by Focused Ultrasound in the Presence ofÂMicrobubbles. Ultrasound in Medicine and Biology, 2016, 42, 1499-1511.	0.7	46
18	Development of zwitterionic copolymers with multi-shape memory effects and moisture-sensitive shape memory effects. Journal of Materials Chemistry B, 2015, 3, 6645-6655.	2.9	43

#	Article	IF	CITATIONS
19	Atomic force microscopy methodology and AFMech Suite software for nanomechanics on heterogeneous soft materials. Nature Communications, 2018, 9, 3584.	5.8	43
20	Smart multifunctional polyurethane microcapsules for the quick release of anticancer drugs in BGC 823 and HeLa tumor cells. Journal of Materials Chemistry B, 2017, 5, 9477-9481.	2.9	42
21	Non-leaching bactericidal cotton fabrics with well-preserved physical properties, no skin irritation and no toxicity. Cellulose, 2018, 25, 5415-5426.	2.4	42
22	Development of supramolecular liquid-crystalline polyurethane complexes exhibiting triple-shape functionality using a one-step programming process. Journal of Materials Chemistry A, 2014, 2, 10169-10181.	5.2	41
23	Guanidine-functionalized cotton fabrics for achieving permanent antibacterial activity without compromising their physicochemical properties and cytocompatibility. Cellulose, 2020, 27, 6027-6036.	2.4	41
24	Shaped core/shell polymer nanoobjects with high antibacterial activities via block copolymer microphase separation. Polymer, 2013, 54, 3485-3491.	1.8	40
25	Non-Leaching, Rapid Bactericidal and Biocompatible Polyester Fabrics Finished with Benzophenone Terminated N-halamine. Advanced Fiber Materials, 2022, 4, 119-128.	7.9	40
26	Fabrication of Cu/TiO2 nanocomposite: Toward an enhanced antibacterial performance in the absence of light. Materials Letters, 2012, 83, 154-157.	1.3	39
27	A new AIE multi-block polyurethane copolymer material for subcellular microfilament imaging in living cells. Chemical Communications, 2017, 53, 7541-7544.	2.2	38
28	Insights into liquid-crystalline shape-memory polyurethane composites based on an amorphous reversible phase and hexadecyloxybenzoic acid. Journal of Materials Chemistry C, 2014, 2, 1041-1049.	2.7	36
29	Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine. Materials Science and Engineering C, 2020, 111, 110855.	3.8	36
30	Electroactive twoâ€way shape memory polymer laminates. Polymer Composites, 2015, 36, 439-444.	2.3	34
31	Facile fabrication of polyurethane microcapsules carriers for tracing cellular internalization and intracellular pH-triggered drug release. Colloids and Surfaces B: Biointerfaces, 2017, 153, 160-167.	2.5	30
32	Relationships between organic vapor adsorption behaviors and gas sensitivity of carbon black filled waterborne polyurethane composites. Sensors and Actuators B: Chemical, 2006, 119, 110-117.	4.0	29
33	Development of liquid-crystalline shape-memory polyurethane composites based on polyurethane with semi-crystalline reversible phase and hexadecyloxybenzoic acid for self-healing applications. Journal of Materials Chemistry C, 2014, 2, 4203-4212.	2.7	28
34	Effect of MDI–BDO hard segment on pyridine-containing shape memory polyurethanes. Journal of Materials Science, 2011, 46, 5294-5304.	1.7	27
35	Studies of the moistureâ€sensitive shape memory effect of pyridineâ€containing polyurethanes. Polymer International, 2012, 61, 314-320.	1.6	27
36	Development of shape memory polyurethane based on polyethylene glycol and liquefied 4,4′â€diphenylmethane diisocyanate using a bulk method for biomedical applications. Polymer International, 2015, 64, 477-485.	1.6	26

#	Article	IF	CITATIONS
37	New insights into multi-shape memory behaviours and liquid crystalline properties of supramolecular polyurethane complexes based on pyridine-containing polyurethane and 4-octyldecyloxybenzoic acid. Journal of Materials Chemistry A, 2015, 3, 19525-19538.	5.2	25
38	Enhancing the chemotherapeutic efficacy of platinum prodrug nanoparticles and inhibiting cancer metastasis by targeting iron homeostasis. Nanoscale Horizons, 2020, 5, 999-1015.	4.1	25
39	Hierarchically porous sponge for oily water treatment: Facile fabrication by combination of particulate templates and thermally induced phase separation method. Journal of Industrial and Engineering Chemistry, 2018, 62, 192-196.	2.9	24
40	A mitochondria targeting artesunate prodrug-loaded nanoparticle exerting anticancer activity via iron-mediated generation of the reactive oxygen species. Chemical Communications, 2019, 55, 4781-4784.	2.2	23
41	Green light–triggered antimicrobial cotton fabric for wastewater disinfection. Materials Today Physics, 2020, 15, 100254.	2.9	22
42	A new strategy for designing multifunctional shape memory polymers with amine-containing polyurethanes. Journal of Materials Science, 2016, 51, 9131-9144.	1.7	19
43	Wetting-Enhanced Structural Color for Convenient and Reversible Encryption of Optical Information. ACS Applied Materials & Samp; Interfaces, 2021, 13, 42276-42286.	4.0	18
44	Synthesis and characterization of siloxane sulfobetaine antimicrobial agents. Surface Science, 2011, 605, L25-L28.	0.8	16
45	Stretchable unidirectional liquid-transporting membrane with antibacterial and biocompatible features based on chitosan derivative and composite nanofibers. Carbohydrate Polymers, 2022, 276, 118703.	5.1	16
46	Spontaneous polarization induced electrostatic charge in washable electret composite fabrics for reusable air-filtering application. Composites Science and Technology, 2022, 217, 109093.	3.8	16
47	Studies on the thermal stability of polyurethanes containing pyridine: Thermogravimetric analysis. Thermochimica Acta, 2012, 543, 281-287.	1.2	15
48	Electrochemical lithiation and delithiation performance of SnSb–Ag/carbon nanonube composites for lithium-ion batteries. Journal of Power Sources, 2013, 233, 166-173.	4.0	15
49	Study on the structure and morphology of supramolecular shape memory polyurethane containing pyridine moieties. Smart Materials and Structures, 2011, 20, 065003.	1.8	14
50	Template-free synthesis of polystyrene monoliths for the removal of oil-in-water emulsion. Scientific Reports, 2017, 7, 6534.	1.6	14
51	On "modulus shift―and thermorheological complexity in polyolefins. Rheologica Acta, 2015, 54, 695-704.	1.1	12
52	Self-Assembling of Electrochemical Glucose Biosensor with Bacteriostatic Materials via Layer-by-Layer Method. Journal of the Electrochemical Society, 2017, 164, B189-B192.	1.3	8
53	A shape memory copolymer based on 2-(dimethylamino)ethyl methacrylate and methyl allyl polyethenoxy ether for potential biological applications. RSC Advances, 2015, 5, 44435-44446.	1.7	6
54	Giant persistent antimicrobial and biocompatible polyester fabrics for anti-mold food packaging. Materials Today Chemistry, 2021, 22, 100571.	1.7	5

SHI-GUO CHEN

#	Article	IF	CITATIONS
55	Facile preparation of shape memory polyurethanes by polyurethanes blending. Journal of Applied Polymer Science, 2013, 130, 4047-4053.	1.3	2
56	Packaging of graphite/epoxy composite film as electric heating devices. , 2014, , .		O
57	Effect of diisocyanate on pyridine containing shape memory polyurethanes based on ⟨i⟩N⟨ i⟩,⟨i⟩N⟨ i⟩â€bis(2â€hydroxylethyl)isonicotinamide. Journal of Applied Polymer Science, 2014, 131, .	1.3	O
58	Packaging of graphite/epoxy composite film as electric heating devices. , 2014, , .		0