Isiah M Warner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4950749/publications.pdf Version: 2024-02-01

		126907	175258
121	3,758	33	52
papers	citations	h-index	g-index
121	121	121	3217
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Protein discrimination using erythrosin B-based GUMBOS in combination with UV–Vis spectroscopy and chemometrics. Talanta, 2022, 240, 123164.	5.5	4
2	A Miniaturized Quartz Crystal Microbalance (QCM) Measurement Instrument Based on a Phase-Locked Loop Circuit. Electronics (Switzerland), 2022, 11, 358.	3.1	8
3	A Thermoset Shape Memory Polymer-Based Syntactic Foam with Flame Retardancy and 3D Printability. ACS Applied Polymer Materials, 2022, 4, 1183-1195.	4.4	12
4	Fluorescent Ionic Probe for Determination of Mechanical Properties of Healed Poly(ethylene- <i>co</i> -methacrylic acid) Ionomer Films. ACS Applied Polymer Materials, 2022, 4, 832-841.	4.4	1
5	Perspectives of Three African American Chemists: Reflections on Careers, Experiences, and the Future. Analytical Chemistry, 2022, 94, 9952-9959.	6.5	0
6	Coating-Based Quartz Crystal Microbalance Detection Methods of Environmentally Relevant Volatile Organic Compounds. Chemosensors, 2021, 9, 153.	3.6	14
7	A Highly Selective Economical Sensor for 4-Nitrophenol. Sustainable Chemistry, 2021, 2, 506-520.	4.7	1
8	Efficient Low-Cost Procedure for Microextraction of Estrogen from Environmental Water Using Magnetic Ionic Liquids. Molecules, 2021, 26, 32.	3.8	10
9	Recycling Thermoset Epoxy Resin Using Alkyl-Methyl-Imidazolium Ionic Liquids as Green Solvents. ACS Applied Polymer Materials, 2021, 3, 5588-5595.	4.4	30
10	Pyrene-Benzimidazole Derivatives as Novel Blue Emitters for OLEDs. Molecules, 2021, 26, 6523.	3.8	10
11	Molecular (Raman, NIR, and FTIR) spectroscopy and multivariate analysis in consumable products analysis ¹ . Applied Spectroscopy Reviews, 2020, 55, 647-723.	6.7	33
12	Comparison of Chemotherapeutic Activities of Rhodamine-Based GUMBOS and NanoGUMBOS. Molecules, 2020, 25, 3272.	3.8	13
13	GUMBOS and nanoGUMBOS in chemical and biological analysis: A review. Analytica Chimica Acta, 2020, 1133, 180-198.	5.4	10
14	Protein Discrimination Using a Fluorescence-Based Sensor Array of Thiacarbocyanine-GUMBOS. ACS Sensors, 2020, 5, 2422-2429.	7.8	30
15	Efficient Photoinduced Energy Transfer in Porphyrin-Based Nanomaterials. Journal of Physical Chemistry C, 2020, 124, 24533-24541.	3.1	10
16	Octenidine/carbenicillin GUMBOS as potential treatment for oropharyngeal gonorrhoea. Journal of Antimicrobial Chemotherapy, 2020, 75, 3576-3581.	3.0	5
17	QCM Sensor Arrays, Electroanalytical Techniques and NIR Spectroscopy Coupled to Multivariate Analysis for Quality Assessment of Food Products, Raw Materials, Ingredients and Foodborne Pathogen Detection: Challenges and Breakthroughs. Sensors, 2020, 20, 6982.	3.8	20
18	Hyaluronic Acid–Cellulose Composites as Patches for Minimizing Bacterial Infections. ACS Omega, 2020, 5, 4125-4132.	3.5	22

#	Article	IF	CITATIONS
19	Quartz Crystal Microbalance Based Sensor Arrays for Detection and Discrimination of VOCs Using Phosphonium Ionic Liquid Composites. Sensors, 2020, 20, 615.	3.8	10
20	Tumor-Targeting NIRF NanoGUMBOS with Cyclodextrin-Enhanced Chemo/Photothermal Antitumor Activities. ACS Applied Materials & amp; Interfaces, 2019, 11, 27548-27557.	8.0	25
21	Imidazolium-dysprosium-based magnetic NanoGUMBOS for isolation of hemoglobin. Talanta, 2019, 205, 120078.	5.5	11
22	Pyrenylpyridines: Sky-Blue Emitters for Organic Light-Emitting Diodes. ACS Omega, 2019, 4, 16867-16877.	3.5	4
23	Fluorescence-Based Ratiometric Nanosensor for Selective Imaging of Cancer Cells. ACS Omega, 2019, 4, 1592-1600.	3.5	11
24	Influence of Anion Variations on Morphological, Spectral, and Physical Properties of the Propidium Luminophore. Journal of Physical Chemistry A, 2019, 123, 111-119.	2.5	9
25	Sodium deoxycholate/TRIS-based hydrogels for multipurpose solute delivery vehicles: Ambient release, drug release, and enantiopreferential release. Talanta, 2018, 177, 66-73.	5.5	13
26	Ratiometric fluorescence detection of hydroxyl radical using cyanine-based binary nanoGUMBOS. Sensors and Actuators B: Chemical, 2018, 257, 993-1000.	7.8	14
27	Mitochondria targeting IR780-based nanoGUMBOS for enhanced selective toxicity towards cancer cells. RSC Advances, 2018, 8, 31700-31709.	3.6	23
28	Endocytic Selective Toxicity of Rhodamine 6G nanoGUMBOS in Breast Cancer Cells. Molecular Pharmaceutics, 2018, 15, 3837-3845.	4.6	16
29	Enhanced chemotherapeutic toxicity of cyclodextrin templated size-tunable rhodamine 6G nanoGUMBOS. Journal of Materials Chemistry B, 2018, 6, 5451-5459.	5.8	15
30	Class specific discrimination of volatile organic compounds using a quartz crystal microbalance based multisensor array. Talanta, 2018, 188, 423-428.	5.5	28
31	QCM virtual sensor array: Vapor identification and molecular weight approximation. Sensors and Actuators B: Chemical, 2017, 246, 952-960.	7.8	33
32	QCM virtual multisensor array for fuel discrimination and detection of gasoline adulteration. Fuel, 2017, 199, 38-46.	6.4	27
33	Ultrafast and nonlinear spectroscopy of brilliant green-based nanoGUMBOS with enhanced near-infrared emission. Journal of Chemical Physics, 2017, 147, 144701.	3.0	11
34	Cationic ionic liquid surfactant-polyacrylamide gel electrophoresis for enhanced separation of acidic and basic proteins with single-step ribonuclease b glycoforms separation. Journal of Chromatography A, 2017, 1515, 245-251.	3.7	3
35	Improving energy relay dyes for dye-sensitized solar cells by use of a group of uniform materials based on organic salts (GUMBOS). RSC Advances, 2016, 6, 95273-95282.	3.6	19
36	Assessment of QCM array schemes for mixture identification: citrus scented odors. RSC Advances, 2016, 6, 95378-95386.	3.6	19

#	Article	IF	CITATIONS
37	Tunable GUMBOS-based sensor array for label-free detection and discrimination of proteins. Journal of Materials Chemistry B, 2016, 4, 1414-1422.	5.8	32
38	Synthesis and Characterization of Porphyrin-Based GUMBOS and NanoGUMBOS as Improved Photosensitizers. Journal of Physical Chemistry C, 2016, 120, 5155-5163.	3.1	26
39	Fluorescence, Phosphorescence, and Chemiluminescence. Analytical Chemistry, 2016, 88, 170-202.	6.5	95
40	Ionic liquid crosslinkers for chiral imprinted nanoGUMBOS. Journal of Colloid and Interface Science, 2016, 463, 29-36.	9.4	20
41	Strategy for Tuning the Photophysical Properties of Photosensitizers for Use in Photodynamic Therapy. Chemistry - A European Journal, 2015, 21, 14440-14446.	3.3	23
42	Recycling Antibiotics into GUMBOS: A New Combination Strategy to Combat Multi-Drug-Resistant Bacteria. Molecules, 2015, 20, 6466-6487.	3.8	28
43	Spectral and Physicochemical Characterization of Dysprosium-Based Multifunctional Ionic Liquid Crystals. Journal of Physical Chemistry A, 2015, 119, 4780-4786.	2.5	11
44	Sodium Deoxycholate Hydrogels: Effects of Modifications on Gelation, Drug Release, and Nanotemplating. Journal of Physical Chemistry B, 2015, 119, 8651-8659.	2.6	29
45	Anomalous Size-Dependent Excited-State Relaxation Dynamics of NanoGUMBOS. Journal of Physical Chemistry C, 2015, 119, 28206-28213.	3.1	10
46	Enhanced S ₂ emission in carbazole-based ionic liquids. RSC Advances, 2015, 5, 9939-9945.	3.6	21
47	Strategies for controlled synthesis of nanoparticles derived from a group of uniform materials based on organic salts. Journal of Colloid and Interface Science, 2015, 446, 163-169.	9.4	18
48	Multimodal theranostic nanomaterials derived from phthalocyanine-based organic salt. RSC Advances, 2015, 5, 30227-30233.	3.6	8
49	Virtual Colorimetric Sensor Array: Single Ionic Liquid for Solvent Discrimination. Analytical Chemistry, 2015, 87, 4464-4471.	6.5	54
50	Rational Design of QCM-D Virtual Sensor Arrays Based on Film Thickness, Viscoelasticity, and Harmonics for Vapor Discrimination. Analytical Chemistry, 2015, 87, 5156-5166.	6.5	61
51	Ionic liquids as buffer additives in ionic liquid-polyacrylamide gel electrophoresis separation of mixtures of low and high molecular weight proteins. RSC Advances, 2015, 5, 69229-69237.	3.6	7
52	Phthalocyanine- and porphyrin-based GUMBOS for rapid and sensitive detection of organic vapors. Sensors and Actuators B: Chemical, 2015, 209, 172-179.	7.8	31
53	GUMBOS matrices of variable hydrophobicity for matrixâ€assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2014, 28, 2307-2314.	1.5	16
54	Fluorescein-based ionic liquid sensor for label-free detection of serum albumins. RSC Advances, 2014, 4, 17533-17540.	3.6	18

#	Article	IF	CITATIONS
55	Carbazole-Derived Group of Uniform Materials Based on Organic Salts: Solid State Fluorescent Analogues of Ionic Liquids for Potential Applications in Organic-Based Blue Light-Emitting Diodes. Journal of Physical Chemistry C, 2014, 118, 2312-2320.	3.1	47
56	Diversifying Science, Technology, Engineering, and Mathematics (STEM): An Inquiry into Successful Approaches in Chemistry. Journal of Chemical Education, 2014, 91, 1860-1866.	2.3	29
5 7	Molecular weight sensing properties of ionic liquid-polymer composite films: theory and experiment. Journal of Materials Chemistry C, 2014, 2, 4867-4878.	5.5	24
58	In vitro activity studies of hyperthermal near-infrared nanoGUMBOS in MDA-MB-231 breast cancer cells. Photochemical and Photobiological Sciences, 2014, 13, 1270-1280.	2.9	12
59	Ionic liquid-based optoelectronic sensor arrays for chemical detection. RSC Advances, 2014, 4, 7225-7234.	3.6	55
60	Electro-optical characterization of cyanine-based GUMBOS and nanoGUMBOS. Electronic Materials Letters, 2014, 10, 879-885.	2.2	11
61	Ionic liquid-based dispersive microextraction of nitrotoluenes in water samples. Mikrochimica Acta, 2014, 181, 1191-1198.	5.0	16
62	Perspectives on Moving Ionic Liquid Chemistry into the Solid Phase. Analytical Chemistry, 2014, 86, 7184-7191.	6.5	67
63	Tunable near-infrared emission of binary nano- and mesoscale GUMBOS. RSC Advances, 2014, 4, 28471-28480.	3.6	16
64	Photothermal Response of Near-Infrared-Absorbing NanoGUMBOS. Applied Spectroscopy, 2014, 68, 340-352.	2.2	7
65	Ionic liquid-based fluorescein colorimetric pH nanosensors. RSC Advances, 2013, 3, 21054.	3.6	33
66	Tunable Cytotoxicity of Rhodamine 6G via Anion Variations. Journal of the American Chemical Society, 2013, 135, 15873-15879.	13.7	102
67	Minimizing human infection from Escherichia coli O157:H7 using GUMBOS. Journal of Antimicrobial Chemotherapy, 2013, 68, 1312-1318.	3.0	17
68	Tunable Size and Spectral Properties of Fluorescent NanoGUMBOS in Modified Sodium Deoxycholate Hydrogels. Langmuir, 2012, 28, 757-765.	3.5	26
69	Increasing Access for Economically Disadvantaged Students: The NSF/CSEM & S-STEM Programs at Louisiana State University. Journal of Science Education and Technology, 2012, 21, 581-587.	3.9	31
70	Irradiation Induced Fluorescence Enhancement in PEGylated Cyanine-Based NIR Nano- and Mesoscale GUMBOS. Langmuir, 2012, 28, 14415-14423.	3.5	35
71	A novel composite film for detection and molecular weight determination of organic vapors. Journal of Materials Chemistry, 2012, 22, 13732.	6.7	44
72	Ionically Self-Assembled, Multi-Luminophore One-Dimensional Micro- and Nanoscale Aggregates of Thiacarbocyanine GUMBOS. Journal of Physical Chemistry C, 2012, 116, 8251-8260.	3.1	30

#	Article	IF	CITATIONS
73	Anion-controlled morphologies and spectral features of cyanine-based nanoGUMBOS – an improved photosensitizer. Nanoscale, 2012, 4, 5031.	5.6	63
74	Lipophilic phosphonium–lanthanide compounds with magnetic, luminescent, and tumor targeting properties. Journal of Inorganic Biochemistry, 2012, 107, 40-46.	3.5	19
75	Fluorescent one-dimensional nanostructures from a group of uniform materials based on organic salts. Chemical Communications, 2011, 47, 8916.	4.1	38
76	Design, Synthesis, and Biological Evaluation of βâ€Lactam Antibioticâ€Based Imidazolium―and Pyridiniumâ€Typ Ionic Liquids. Chemical Biology and Drug Design, 2011, 78, 33-41.)e 3.2	91
77	Highly efficient extraction of phenolic compounds by use of magnetic room temperature ionic liquids for environmental remediation. Journal of Hazardous Materials, 2011, 192, 1350-1357.	12.4	152
78	Nontemplated Approach to Tuning the Spectral Properties of Cyanine-Based Fluorescent NanoGUMBOS. Langmuir, 2010, 26, 12867-12876.	3.5	82
79	Lanthanide-Based Luminescent NanoGUMBOS. Langmuir, 2010, 26, 15599-15603.	3.5	37
80	Magnetic and Nonmagnetic Nanoparticles from a Group of Uniform Materials Based on Organic Salts. ACS Nano, 2009, 3, 3244-3250.	14.6	56
81	Near-Infrared Fluorescent NanoGUMBOS for Biomedical Imaging. ACS Nano, 2009, 3, 3854-3860.	14.6	97
82	Nanostructures of Cysteine-Coated CdS Nanoparticles Produced with "Two-Particle―Lithography. Journal of Physical Chemistry C, 2009, 113, 5933-5940.	3.1	24
83	Controllable Formation of Ionic Liquid Micro- and Nanoparticles via a Melt–Emulsion–Quench Approach. Nano Letters, 2008, 8, 897-901.	9.1	59
84	Cyclodextrins Host- Guest Chemistry in Analytical and Environmental Chemistry. Current Analytical Chemistry, 2007, 3, 171-181.	1.2	59
85	Chiral Recognition of Propranolol with β-Cyclodextrin in the Presence of 1- and 2-Butanol. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2005, 51, 87-91.	1.6	12
86	Climbing Bloom's Ladder. Journal of Chemical Education, 2004, 81, 1413.	2.3	1
87	Fluorescence and Nuclear Magnetic Resonance Spectroscopic Studies of the Effect of the Polymerization Concentration on the Properties of an Amino Acid-Based Polymeric Surfactant. Langmuir, 2003, 19, 10684-10691.	3.5	14
88	Pulsed field gradient NMR investigation of solubilization equilibria in amino acid and dipeptide terminated micellar and polymeric surfactant solutions. Magnetic Resonance in Chemistry, 2002, 40, 755-761.	1.9	13
89	Separation of Tocopherol Isomers Using Capillary Electrochromatography:Â Comparison of Monomeric and Polymeric C30Stationary Phases. Analytical Chemistry, 2001, 73, 6077-6082.	6.5	39
90	Fluorescence Anisotropy as a Measure of Chiral Recognition. Journal of the American Chemical Society, 2001, 123, 3173-3174.	13.7	74

#	Article	IF	CITATIONS
91	Chiral separation with dipeptide-terminated polymeric surfactants: The effect of an extra heteroatom on the polar head group. Electrophoresis, 2000, 21, 1597-1605.	2.4	29
92	Capillary electrophoretic separation of binaphthyl enantiomers with two polymeric chiral surfactants:1H-nuclear magnetic resonance and fluorescence spectroscopy study. Electrophoresis, 2000, 21, 2025-2032.	2.4	23
93	OPTIMIZING ENANTIOSEPARATION OF PHENYLTHIOHYDANTOIN AMINO ACIDS WITH POLYMERIZED SODIUM N-UNDECANOYL L-VALINATE IN CHIRAL ELECTROKINETIC CHROMATOGRAPHY. Journal of Liquid Chromatography and Related Technologies, 2000, 23, 1301-1317.	1.0	8
94	Examination of Structural Changes of Polymeric Amino Acid-Based Surfactants on Enantioselectivity:Â Effect of Amino Acid Order, Steric Factors, and Number and Position of Chiral Centers. Analytical Chemistry, 2000, 72, 1740-1748.	6.5	46
95	GR 24 Enantiomers:Â Synthesis, NMR Spectroscopy, X-ray Crystallography, and Separation by Chiral Electrokinetic Capillary Chromatography. Analytical Chemistry, 2000, 72, 3887-3895.	6.5	17
96	Chiral separation with dipeptide-terminated polymeric surfactants: The effect of an extra heteroatom on the polar head group. Electrophoresis, 2000, 21, 1597-1605.	2.4	2
97	Electrokinetic chromatography of twelve monomethylbenz[a]anthracene isomers using a polymerized anionic surfactant. Electrophoresis, 1999, 20, 145-151.	2.4	28
98	Amino Acid Order in Polymeric Dipeptide Surfactants:Â Effect on Physical Properties and Enantioselectivity. Analytical Chemistry, 1999, 71, 1252-1256.	6.5	46
99	Evaluating Chiral Separation Interactions by Use of Diastereomeric Polymeric Dipeptide Surfactants. Analytical Chemistry, 1999, 71, 4044-4049.	6.5	51
100	Electrokinetic chromatography of twelve monomethylbenz[a]anthracene isomers using a polymerized anionic surfactant. Electrophoresis, 1999, 20, 145-151.	2.4	1
101	Enhanced separation of antidepressant drugs using a polymerized nonionic surfactant as a transient capillary coating. Electrophoresis, 1998, 19, 712-718.	2.4	25
102	On-line capillary electrophoresis-electrospray ionization mass spectrometry using a polymerized anionic surfactant. Electrophoresis, 1998, 19, 2193-2199.	2.4	47
103	Use of a New Diaminobutane Dendrimer in Electrokinetic Capillary Chromatography. Journal of Liquid Chromatography and Related Technologies, 1998, 21, 611-624.	1.0	7
104	Effect of Sodium Perchlorate on the Binding of 2-(4â€~-Aminophenyl)- and 2-(4â€~-(N,Nâ€~-Dimethylamino)phenyl)benzothiazole with β-Cyclodextrin in Aqueous Solution. Journal of Physical Chemistry A, 1998, 102, 301-305.	2.5	37
105	Polymeric Anionic Surfactant for Electrokinetic Chromatography:  Separation of 16 Priority Polycyclic Aromatic Hydrocarbon Pollutants. Analytical Chemistry, 1998, 70, 3078-3083.	6.5	101
106	Capillary Zone Electrophoresis of Bile Acids with Indirect Photometric Detection. Analytical Chemistry, 1998, 70, 1412-1418.	6.5	10
107	Chiral Separations Using Dipeptide Polymerized Surfactants:Â Effect of Amino Acid Order. Analytical Chemistry, 1998, 70, 1375-1381.	6.5	76
108	Complexation Studies of Water-soluble Calixarenes and Auramine O Dye. Supramolecular Chemistry, 1997, 8, 309-318.	1.2	31

#	Article	IF	CITATIONS
109	Excited-State Intramolecular Proton Transfer of 2-(2â€~-Hydroxyphenyl)benzimidazole in Cyclodextrins and Binary Solvent Mixtures. Journal of Physical Chemistry A, 1997, 101, 5296-5301.	2.5	107
110	Studies of Polymerized SodiumN-Undecylenyl-l-valinate in Chiral Micellar Electrokinetic Capillary Chromatography of Neutral, Acidic, and Basic Compounds. Analytical Chemistry, 1997, 69, 958-964.	6.5	65
111	Synthesis of Novel Î ³ -Alkenyll-Glutamate Derivatives Containing a Terminal Câ^'C Double Bond To Produce Polypeptides with Pendent Unsaturation. Macromolecules, 1997, 30, 8081-8084.	4.8	23
112	Enantiomeric Separations by Use of Calixarene Electrokinetic Chromatography. Analytical Chemistry, 1997, 69, 3239-3242.	6.5	70
113	Dual Fluorescence of 9-(N,N-Dimethylamino)anthracene:Â Effect of Solvent Polarity and Viscosity. Journal of Physical Chemistry A, 1997, 101, 4872-4878.	2.5	41
114	Spectroscopic study of a representative polar cap of buckminsterfullerene: Cyclopentacorannulene. Journal of Fluorescence, 1997, 7, 231-236.	2.5	41
115	Phosphated surfactants as pseudostationary phase for micellar electrokinetic chromatography: Separation of polycyclic aromatic hydrocarbons. Electrophoresis, 1997, 18, 253-259.	2.4	16
116	Monomeric and polymeric chiral surfactants as pseudo-stationary phases for chiral separations. Electrophoresis, 1997, 18, 853-872.	2.4	79
117	Extraction of Volatile PAHs from Air by Use of Solid Cyclodextrin. Analytical Chemistry, 1996, 68, 1187-1190.	6.5	50
118	Ground- and Excited-State Structural Orientation of 2-(2â€~-Hydroxyphenyl)benzazoles in Cyclodextrins. The Journal of Physical Chemistry, 1996, 100, 19681-19686.	2.9	73
119	Spectroscopic studies of water-soluble sulfonated calix[6]arene. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1996, 24, 353-365.	1.6	13
120	Use of Cyclodextrins and Fluorescence Spectroscopy To Probe the Dual Fluorescence of 9-Anthroic Acid. The Journal of Physical Chemistry, 1996, 100, 17133-17137.	2.9	29
121	Group of Uniform Materials Based on Organic Salts (GUMBOS): A Review of Their Solid State Properties and Applications. , 0, , .		2