Jian-zhong Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4950588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ligand Field Affected Single-Molecule Magnet Behavior of Lanthanide(III) Dinuclear Complexes with an 8-Hydroxyquinoline Schiff Base Derivative as Bridging Ligand. Inorganic Chemistry, 2015, 54, 10610-10622.	4.0	181
2	A Semi onductive Copper–Organic Framework with Two Types of Photocatalytic Activity. Angewandte Chemie - International Edition, 2016, 55, 4938-4942.	13.8	164
3	Unique (3,12)-connected coordination polymers displaying high stability, large magnetocaloric effect and slow magnetic relaxation. Chemical Communications, 2013, 49, 6066.	4.1	139
4	Modulating single-molecule magnet behaviour of phenoxo-O bridged lanthanide(<scp>iii</scp>) dinuclear complexes by using different β-diketonate coligands. Inorganic Chemistry Frontiers, 2016, 3, 133-141.	6.0	139
5	Self-assembly of tetra-nuclear lanthanide clusters <i>via</i> atmospheric CO ₂ fixation: interesting solvent-induced structures and magnetic relaxation conversions. Inorganic Chemistry Frontiers, 2018, 5, 2346-2354.	6.0	133
6	Modulating single-molecule magnet behavior towards multiple magnetic relaxation processes through structural variation in Dy ₄ clusters. Inorganic Chemistry Frontiers, 2018, 5, 1876-1885.	6.0	122
7	Unique Chiral Interpenetrating d–f Heterometallic MOFs as Luminescent Sensors. Inorganic Chemistry, 2015, 54, 5266-5272.	4.0	110
8	Structures and magnetic properties of several phenoxo-O bridged dinuclear lanthanide complexes: Dy derivatives displaying substituent dependent magnetic relaxation behavior. Dalton Transactions, 2016, 45, 8182-8191.	3.3	106
9	Structures, luminescent and magnetic properties of six lanthanide–organic frameworks: observation of slow magnetic relaxation behavior in the Dylll compound. Dalton Transactions, 2013, 42, 3587.	3.3	100
10	Linear-shaped LnIII4 and LnIII6 clusters constructed by a polydentate Schiff base ligand and a β-diketone co-ligand: structures, fluorescence properties, magnetic refrigeration and single-molecule magnet behavior. Dalton Transactions, 2019, 48, 16744-16755.	3.3	94
11	Two luminescent lanthanide(<scp>iii</scp>) metal–organic frameworks as chemosensors for high-efficiency recognition of Cr(<scp>vi</scp>) anions in aqueous solution. Dalton Transactions, 2018, 47, 15694-15702.	3.3	92
12	Water Stable [Tb ₄] Cluster-Based Metal–Organic Framework as Sensitive and Recyclable Luminescence Sensor of Quercetin. Analytical Chemistry, 2019, 91, 2595-2599.	6.5	91
13	Wheel-like Ln ₁₈ Cluster Organic Frameworks for Magnetic Refrigeration and Conversion of CO ₂ . Inorganic Chemistry, 2018, 57, 3144-3150.	4.0	79
14	A <i>usf</i> Zinc(II) Metal–Organic Framework as a Highly Selective Luminescence Probe for Acetylacetone Detection and Its Postsynthetic Cation Exchange. Crystal Growth and Design, 2018, 18, 3997-4003.	3.0	75
15	Sensitive luminescent probes of aniline, benzaldehyde and Cr(VI) based on a zinc(II) metal-organic framework and its lanthanide(III) post-functionalizations. Dyes and Pigments, 2018, 159, 429-438.	3.7	63
16	Butterfly-shaped tetranuclear Ln ₄ clusters showing magnetic refrigeration and single molecule-magnet behavior. New Journal of Chemistry, 2018, 42, 14949-14955.	2.8	62
17	A series of [2 × 2] square grid LnIII4 clusters: a large magnetocaloric effect and single-molecule-magnet behavior. New Journal of Chemistry, 2019, 43, 7419-7426.	2.8	61
18	Novel Water Clusters in Two Complexes of Pyridine-2,3,5,6-tetracarboxylate. Crystal Growth and Design, 2008, 8, 3354-3359.	3.0	60

#	Article	IF	CITATIONS
19	Tuning the luminescence of two 3d–4f metal–organic frameworks for the fast response and highly selective detection of aniline. Dalton Transactions, 2017, 46, 16432-16438.	3.3	60
20	Multiple magnetic relaxation processes, magnetocaloric effect and fluorescence properties of rhombus-shaped tetranuclear rare earth complexes. Dalton Transactions, 2016, 45, 253-264.	3.3	54
21	Luminescence, magnetocaloric effect and single-molecule magnet behavior in lanthanide complexes based on a tridentate ligand derived from 8-hydroxyquinoline. Dalton Transactions, 2015, 44, 18893-18901.	3.3	53
22	A Dy4 single-molecule magnet and its Gd(<scp>iii</scp>), Tb(<scp>iii</scp>), Ho(<scp>iii</scp>), and Er(<scp>iii</scp>) analogues encapsulated by an 8-hydroxyquinoline Schiff base derivative and β-diketonate coligand. Dalton Transactions, 2017, 46, 4669-4677.	3.3	53
23	New strategy to construct single-ion magnets: a unique Dy@Zn6 cluster exhibiting slow magnetic relaxation. Chemical Communications, 2014, 50, 4255-4257.	4.1	52
24	Seven phenoxido-bridged complexes encapsulated by 8-hydroxyquinoline Schiff base derivatives and β-diketone ligands: single-molecule magnet, magnetic refrigeration and luminescence properties. Dalton Transactions, 2016, 45, 3362-3371.	3.3	52
25	A new family of dinuclear lanthanide complexes constructed from an 8-hydroxyquinoline Schiff base and β-diketone: magnetic properties and near-infrared luminescence. Dalton Transactions, 2019, 48, 1392-1403.	3.3	52
26	Structures, luminescent and magnetic properties of a series of (3,6)-connected lanthanide–organic frameworks. Dalton Transactions, 2014, 43, 1814-1820.	3.3	50
27	Fine-tuning the magnetocaloric effect and SMMs behaviors of coplanar RE ₄ complexes by β-diketonate coligands. Inorganic Chemistry Frontiers, 2017, 4, 860-870.	6.0	48
28	The multiple core–shell structure in Cu24Ln6 cluster with magnetocaloric effect and slow magnetization relaxation. Dalton Transactions, 2014, 43, 5639.	3.3	45
29	pH-induced Dy ₄ and Dy ₁₀ cluster-based 1D chains with different magnetic relaxation features. Dalton Transactions, 2014, 43, 16838-16845.	3.3	43
30	Auxiliary ligand-assisted structural diversities of three metal–organic frameworks with potassium 1H-1,2,3-triazole-4,5-dicarboxylic acid: syntheses, crystal structures and luminescence properties. CrystEngComm, 2013, 15, 2682.	2.6	41
31	Magnetic properties and structure of tetranuclear lanthanide complexes based on 8-hydroxylquinoline Schiff base derivative and β-diketone coligand. Dalton Transactions, 2018, 47, 3503-3511.	3.3	41
32	A unique zinc-organic framework constructed through in situ ligand synthesis for conversion of CO ₂ under mild conditions and as a luminescence sensor for Cr ₂ O ₇ ^{2â^'} /CrO ₄ ^{2â^'} . Dalton Transactions, 2017, 46, 13862-13868.	3.3	40
33	Luminescence and magnetocaloric effect of Ln ₄ clusters (Ln = Eu, Gd, Tb, Er) bridged by CO ₃ ^{2â"} deriving from the spontaneous fixation of carbon dioxide in the atmosphere. Inorganic Chemistry Frontiers, 2018, 5, 394-402.	6.0	39
34	Molecular assemblies from linear-shaped Ln ₄ clusters to Ln ₈ clusters using different β-diketonates: disparate magnetocaloric effects and single-molecule magnet behaviours. Dalton Transactions, 2021, 50, 12931-12943.	3.3	38
35	Structural Diversity, Luminescence, and Magnetic Property: Series of Coordination Polymers with 2,2′-Bipyridyl-4,4′-Dicarboxylic Acid. Crystal Growth and Design, 2012, 12, 3917-3926.	3.0	37
36	Syntheses, structures, and photoluminescence of lanthanide coordination polymers with pyridine-2,3,5,6-tetracarboxylic acid. CrystEngComm, 2011, 13, 1870-1876.	2.6	34

#	Article	IF	CITATIONS
37	Spin canting and metamagnetism in 3D pillared-layer homospin cobalt(ii) molecular magnetic materials constructed via a mixed ligands approach. Inorganic Chemistry Frontiers, 2014, 1, 242.	6.0	34
38	Single-Molecule-Magnet Behavior and Fluorescence Properties of 8-Hydroxyquinolinate Derivative-Based Rare-Earth Complexes. Inorganic Chemistry, 2016, 55, 8898-8904.	4.0	34
39	Near-infrared luminescence and SMM behaviors of a family of dinuclear lanthanide 8-quinolinolate complexes. RSC Advances, 2016, 6, 34165-34174.	3.6	33
40	Solvent-Dependent Assembly and Magnetic Relaxation Behaviors of [Cu4I3] Cluster-Based Lanthanide MOFs: Acting as Efficient Catalysts for Carbon Dioxide Conversion with Propargylic Alcohols. Inorganic Chemistry, 2020, 59, 15111-15119.	4.0	33
41	Structures and magnetic properties of novel Ln(<scp>iii</scp>)-based pentanuclear clusters: magnetic refrigeration and single-molecule magnet behavior. New Journal of Chemistry, 2020, 44, 19351-19359.	2.8	26
42	ds-Block metal ions catalyzed decarboxylation of pyrazine-2,3,5,6-tetracarboxylic acid and the complexes obtained from hydrothermal reactions and novel water clusters. CrystEngComm, 2009, 11, 2719.	2.6	25
43	Cobalt(II)-Lanthanide(III) Heterometallic Metal-Organic Frameworks with Unique (6,6)-Connected Nia Topologies with 1H-1,2,3-Triazole-4,5-dicarboxylic Acid: Syntheses, Structures and Magnetic Properties. European Journal of Inorganic Chemistry, 2014, 2014, 407-412.	2.0	24
44	Slow magnetic relaxation in a lanthanide helix chain compound [Dy(HNA)(NA) ₂ (NO ₃)] _n (HNA = nicotinic acid). Dalton Transactions, 2015, 44, 6169-6174.	3.3	24
45	Dinuclear Ln(<scp>iii</scp>) complexes constructed from an 8-hydroxyquinoline Schiff base derivative with different terminal groups show differing slow magnetic relaxation. New Journal of Chemistry, 2017, 41, 6251-6261.	2.8	24
46	Modulation of the relaxation dynamics of linear-shaped tetranuclear rare-earth clusters through utilizing different solvents. Dalton Transactions, 2016, 45, 19117-19126.	3.3	23
47	Regulating the luminescent and magnetic properties of rare-earth complexes with β-diketonate coligands. New Journal of Chemistry, 2018, 42, 11417-11429.	2.8	23
48	Syntheses, structures, and properties of 3D lanthanide coordination polymers based on pyridine-2,3,5,6-tetracarboxylate. CrystEngComm, 2012, 14, 7965.	2.6	21
49	Spectroscopic and electrochemical studies on the evaluation of the radical scavenging activities of luteolin by chelating iron. RSC Advances, 2014, 4, 25227.	3.6	21
50	A series of Ln ₂ complexes based on an 8-hydroxyquinoline derivative: slow magnetization relaxation and photo-luminescence properties. New Journal of Chemistry, 2018, 42, 5688-5697.	2.8	21
51	Construction of a family of Ln ₃ clusters using multidentate Schiff base and β-diketonate ligands: fluorescence properties, magnetocaloric effect and slow magnetic relaxation. New Journal of Chemistry, 2020, 44, 9230-9237.	2.8	21
52	A new family of 3d–4f heterometallic coordination polymers assembled with 1H-1,2,3-triazole-4,5-dicarboxylic acid: syntheses, structures and magnetic properties. RSC Advances, 2013, 3, 21511.	3.6	20
53	Synthesis, structural characterization and thermal properties of three copper(II) complexes based on aryl hydrazide ligands. Transition Metal Chemistry, 2012, 37, 117-124.	1.4	19
54	A Semiâ€Conductive Copper–Organic Framework with Two Types of Photocatalytic Activity. Angewandte Chemie, 2016, 128, 5022-5026.	2.0	19

#	Article	IF	CITATIONS
55	Syntheses and crystal structures of two new nickel(II) complexes with pyrazine-2,3,5,6-tetracarboxylate. CrystEngComm, 2009, 11, 1427.	2.6	18
56	Structures, magnetic refrigeration and single molecule-magnet behavior of five rhombus-shaped tetranuclear Ln(<scp>iii</scp>)-based clusters. New Journal of Chemistry, 2020, 44, 10266-10274.	2.8	18
57	Modulation of the properties of dinuclear lanthanide complexes through utilizing different β-diketonate co-ligands: near-infrared luminescence and magnetization dynamics. Dalton Transactions, 2020, 49, 2850-2861.	3.3	18
58	Formation of the Water Layer in Lanthanide Coordination Polymers with 6-Methyl-2,3,5-Pyridinetricarboxylate as a Novel Bridging Ligand. Crystal Growth and Design, 2010, 10, 218-223.	3.0	17
59	Single-molecule magnet behavior of a dinuclear dysprosium compound constructed by 8-hydroxyquinoline Schiff base and β-diketonate ligands. Inorganica Chimica Acta, 2016, 439, 106-110.	2.4	17
60	Alkaline cation directed structural diversity of cubic-cage-based cobalt(ii) metal–organic frameworks: from pcu to bct net. CrystEngComm, 2014, 16, 7133.	2.6	16
61	Syntheses, crystal structures, and properties of four transition metal complexes based on 5-nitro-8-hydroxyquinoline. Journal of Coordination Chemistry, 2013, 66, 18-27.	2.2	15
62	Tetranuclear rare-earth complexes: energy barrier enhancement and two-step slow magnetic relaxation activated by ligand substitution. Inorganic Chemistry Frontiers, 2019, 6, 756-764.	6.0	15
63	Modulating the magnetization dynamics of four phenoxo-O bridged Dy ₂ complexes based on a Schiff base derived from 8-hydroxyquinoline. New Journal of Chemistry, 2018, 42, 16836-16845.	2.8	14
64	Near-infrared luminescence and magnetic properties of dinuclear rare earth complexes modulated by β-diketone co-ligands. New Journal of Chemistry, 2020, 44, 3912-3921.	2.8	12
65	Syntheses, structures, and photo-luminescence of three silver complexes with N-heterocyclic multicarboxylic acids and 4,4′-bipyridine. Journal of Coordination Chemistry, 2012, 65, 3740-3751.	2.2	11
66	Homo- and heterometallic complexes based on polytopic carboxylic acid: synthesis, characterization, and property. Journal of Coordination Chemistry, 2012, 65, 1915-1925.	2.2	11
67	3D Metal–Organic Framework Based on Cadmium Complex of Pyrazine-2,3,5,6-tetracarboxylic Acid. Journal of Chemical Crystallography, 2011, 41, 1245-1248.	1.1	10
68	Syntheses, structures, and properties of six new coordination polymers constructed from N-heterocyclic multicarboxylic acids. RSC Advances, 2014, 4, 10424.	3.6	10
69	The near-infrared luminescence and magnetism of dinuclear complexes with different local symmetries constructed from a β-diketonate co-ligand and bis-Schiff base ligand. New Journal of Chemistry, 2020, 44, 2561-2570.	2.8	9
70	Near-infrared luminescence and solvent modulation of the magnetic relaxation behavior of dinuclear lanthanide complexess. Polyhedron, 2018, 151, 537-544.	2.2	8
71	Fabrication of Magnetic Al-Based Fe3O4@MIL-53 Metal Organic Framework for Capture of Multi-Pollutants Residue in Milk Followed by HPLC-UV. Molecules, 2022, 27, 2088.	3.8	8
72	Synthesis, Crystal Structure of a New Co(II) Complex with Pyrazine-2,3,5,6-tetracarboxylic Acid. Journal of Chemical Crystallography, 2008, 38, 393-396.	1.1	7

#	Article	IF	CITATIONS
73	Modulating dynamic magnetic behaviors of two Tb(III) dinuclear complexes by using two different β-diketonate coligands. Inorganica Chimica Acta, 2016, 442, 172-177.	2.4	7
74	Near-infrared luminescence and magnetism of dinuclear lanthanide complexes constructed from a schiff-base and different β-diketonate coligands. Inorganica Chimica Acta, 2021, 525, 120497.	2.4	7
75	Solvent-induced single-molecule magnet behavior and near-infrared luminescence properties of rare earth complexes. New Journal of Chemistry, 2020, 44, 19135-19143.	2.8	6
76	1-D zigzag copper(II) complex with pyrazine-2,3,5,6-tetracarboxylate and oxalate. Journal of Coordination Chemistry, 2009, 62, 3306-3313.	2.2	5
77	A New 2-((Z)-Thiosemicarbazidomethyl)- Quinolin-8-YL Acetate Ligand and its Cu(II) Complex: Syntheses, Structures, and Characterizations. Phosphorus, Sulfur and Silicon and the Related Elements, 2012, 187, 1101-1108.	1.6	5
78	Modulating the magnetization dynamics of rare earth complexes by structural regulation utilizing different solvents. Polyhedron, 2019, 159, 43-53.	2.2	5
79	New dinuclear compounds of dysprosium and erbium constructed by an O-vanillin ligand and β-diketonate coligand: Synthesis, near-Infrared luminescent and magnetism. Inorganica Chimica Acta, 2020, 499, 119203.	2.4	5
80	Boosting Catalytic Efficiency of Metalâ€Organic Frameworks with Electronâ€Withdrawing Effect for Lewisâ€Acid Catalysis. ChemistrySelect, 2021, 6, 7732-7735.	1.5	5
81	Synthesis, characterization and properties of lanthanide complexes with different ancillary ligands. Inorganica Chimica Acta, 2019, 490, 240-245.	2.4	3
82	Solvothermal Syntheses, Crystal Structures, and Luminescent Properties of Two Transition Metal Complexes with 5â€Nitroâ€8â€hydroxyquinoline and Nâ€Containing Auxiliary Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 115-120.	1.2	2
83	Syntheses, crystal structures, magnetic and luminescent properties of lanthanide complexes with nitronyl nitroxide radical as ligand. Journal of Coordination Chemistry, 2016, 69, 594-603.	2.2	2
84	[Ln4] complexes based on 8-hydroxylquinoline-schiff base: Synthesis, crystal structure and near-infrared emission. Polyhedron, 2021, 201, 115165.	2.2	2
85	1-D zigzag double-chain coordination polymers of transition metals derived from pyridine-2,3,5,6-tetracarboxylic acid. Journal of Coordination Chemistry, 2011, 64, 2302-2311.	2.2	1
86	Structures and magnetic properties of rhombus-shaped tetranuclear [Ln4] clusters: Dy4 cluster displaying single molecule magnet behavior. Journal of Molecular Structure, 2021, 1228, 129753.	3.6	1
87	Synthesis and Magnetism of Novel μ-Oxamido Heterotetranuclear Complexes [Cu(II)M(III)] (M = Cr, Fe). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1997, 27, 1501-1508.	1.8	0
88	First Oxalate-Bridged Heterobinuclear Co(II)-Mn(III) Complexes: Synthesis and Magnetism. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1997, 27, 751-758.	1.8	0
89	Innentitelbild: A Semi-Conductive Copper-Organic Framework with Two Types of Photocatalytic Activity (Angew. Chem. 16/2016). Angewandte Chemie, 2016, 128, 4922-4922.	2.0	0