Phillip E Scherer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4950451/publications.pdf

Version: 2024-02-01

227 14,097 61
papers citations h-index

237 237 23662 all docs docs citations times ranked citing authors

26591

107

g-index

#	Article	IF	Citations
1	Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nature Medicine, 2011, 17, 55-63.	15.2	751
2	Obesity and cancerâ€"mechanisms underlying tumour progression and recurrence. Nature Reviews Endocrinology, 2014, 10, 455-465.	4.3	575
3	Adipocyte Inflammation Is Essential for Healthy Adipose Tissue Expansion and Remodeling. Cell Metabolism, 2014, 20, 103-118.	7.2	525
4	An FGF21-Adiponectin-Ceramide Axis Controls Energy Expenditure and Insulin Action in Mice. Cell Metabolism, 2013, 17, 790-797.	7.2	443
5	The cell biology of fat expansion. Journal of Cell Biology, 2015, 208, 501-512.	2.3	428
6	Adiponectin, the past two decades. Journal of Molecular Cell Biology, 2016, 8, 93-100.	1.5	410
7	Spliced X-Box Binding Protein 1 Couples the Unfolded Protein Response to Hexosamine Biosynthetic Pathway. Cell, 2014, 156, 1179-1192.	13.5	317
8	Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nature Communications, 2014, 5, 3485.	5.8	263
9	Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nature Communications, 2014, 5, 3878.	5.8	236
10	Hyperglycemia as a Risk Factor for Cancer Progression. Diabetes and Metabolism Journal, 2014, 38, 330.	1.8	229
11	Xbp1s in Pomc Neurons Connects ER Stress with Energy Balance and Glucose Homeostasis. Cell Metabolism, 2014, 20, 471-482.	7.2	213
12	Genetic Ablation of Caveolin-1 Confers Protection Against Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 98-105.	1.1	206
13	Specific Hepatic Sphingolipids Relate to Insulin Resistance, Oxidative Stress, and Inflammation in Nonalcoholic Steatohepatitis. Diabetes Care, 2018, 41, 1235-1243.	4.3	203
14	The Role of Adipocytes and Adipocyteâ€Like Cells in the Severity of COVIDâ€19 Infections. Obesity, 2020, 28, 1187-1190.	1.5	201
15	Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. Journal of Lipid Research, 2019, 60, 1648-1697.	2.0	197
16	Why does obesity cause diabetes?. Cell Metabolism, 2022, 34, 11-20.	7.2	183
17	Partial Leptin Reduction as an Insulin Sensitization and Weight Loss Strategy. Cell Metabolism, 2019, 30, 706-719.e6.	7.2	179
18	Metabolic Messengers: adiponectin. Nature Metabolism, 2019, 1, 334-339.	5.1	177

#	Article	lF	CITATIONS
19	An Adipose Tissue Atlas: An Image-Guided Identification of Human-like BAT and Beige Depots in Rodents. Cell Metabolism, 2018, 27, 252-262.e3.	7.2	174
20	Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metabolism, 2021, 33, 1853-1868.e11.	7.2	165
21	Obesity, Diabetes, and Cardiovascular Diseases. Circulation Research, 2016, 118, 1703-1705.	2.0	164
22	microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nature Communications, 2017, 8, 14395.	5.8	147
23	The Transcriptional Response of the Islet to Pregnancy in Mice. Molecular Endocrinology, 2009, 23, 1702-1712.	3.7	138
24	Caveolae, transmembrane signalling and cellular transformation. Molecular Membrane Biology, 1995, 12, 121-124.	2.0	135
25	Adipokines Linking Obesity with Colorectal Cancer Risk in Postmenopausal Women. Cancer Research, 2012, 72, 3029-3037.	0.4	135
26	Low- and high-thermogenic brown adipocyte subpopulations coexist in murine adipose tissue. Journal of Clinical Investigation, 2019, 130, 247-257.	3.9	134
27	Beclin 2 Functions in Autophagy, Degradation of G Protein-Coupled Receptors, and Metabolism. Cell, 2013, 154, 1085-1099.	13.5	130
28	Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Molecular Metabolism, 2014, 3, 474-483.	3.0	126
29	Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nature Reviews Nephrology, 2018, 14, 105-120.	4.1	121
30	Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nature Medicine, 2018, 24, 617-627.	15.2	117
31	Reversible De-differentiation of Mature White Adipocytes into Preadipocyte-like Precursors during Lactation. Cell Metabolism, 2018, 28, 282-288.e3.	7.2	116
32	The Xbp1s/GalE axis links ER stress to postprandial hepatic metabolism. Journal of Clinical Investigation, 2013, 123, 455-468.	3.9	115
33	Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nature Neuroscience, 2014, 17, 911-913.	7.1	114
34	The many secret lives of adipocytes: implications for diabetes. Diabetologia, 2019, 62, 223-232.	2.9	114
35	Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nature Cell Biology, 2015, 17, 1099-1111.	4.6	111
36	Grb10 Promotes Lipolysis and Thermogenesis by Phosphorylation-Dependent Feedback Inhibition of mTORC1. Cell Metabolism, 2014, 19, 967-980.	7.2	106

#	Article	IF	CITATIONS
37	Thromboxane A2 is a key regulator of pathogenesis during Trypanosoma cruzi infection. Journal of Experimental Medicine, 2007, 204, 929-940.	4.2	103
38	Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nature Medicine, 2017, 23, 79-90.	15.2	101
39	ATR/TEM8 is highly expressed in epithelial cells liningBacillus anthracis'three sites of entry: implications for the pathogenesis of anthrax infection. American Journal of Physiology - Cell Physiology, 2005, 288, C1402-C1410.	2.1	98
40	Cellular Origins of Beige Fat Cells Revisited. Diabetes, 2019, 68, 1874-1885.	0.3	98
41	Dermal Adipocytes: From Irrelevance to Metabolic Targets?. Trends in Endocrinology and Metabolism, 2016, 27, 1-10.	3.1	97
42	Constitutive and Growth Factor-Regulated Phosphorylation of Caveolin-1 Occurs at the Same Site (Tyr-14) in Vivo: Identification of a c-Src/Cav-1/Grb7 Signaling Cassette., 0, .		93
43	An adipo-biliary-uridine axis that regulates energy homeostasis. Science, 2017, 355, .	6.0	90
44	The Role of Proprotein Convertase Subtilisin/Kexin Type 9 in Nephrotic Syndrome-Associated Hypercholesterolemia. Circulation, 2016, 134, 61-72.	1.6	89
45	5-HT2CRs expressed by pro-opiomelanocortin neurons regulate insulin sensitivity in liver. Nature Neuroscience, 2010, 13, 1457-1459.	7.1	87
46	Selective enhancement of insulin sensitivity in the mature adipocyte is sufficient for systemic metabolic improvements. Nature Communications, 2015, 6, 7906.	5.8	87
47	VEGF-A–Expressing Adipose Tissue Shows Rapid Beiging and Enhanced Survival After Transplantation and Confers IL-4–Independent Metabolic Improvements. Diabetes, 2017, 66, 1479-1490.	0.3	87
48	Structure-guided Development of Specific Pyruvate Dehydrogenase Kinase Inhibitors Targeting the ATP-binding Pocket. Journal of Biological Chemistry, 2014, 289, 4432-4443.	1.6	85
49	Adipose Tissue: A Safe Haven for Parasites?. Trends in Parasitology, 2017, 33, 276-284.	1.5	84
50	A Prospective Study of Inflammation Markers and Endometrial Cancer Risk in Postmenopausal Hormone Nonusers. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 971-977.	1.1	83
51	Circulating Adipokines and Inflammatory Markers and Postmenopausal Breast Cancer Risk. Journal of the National Cancer Institute, 2015, 107, .	3.0	83
52	Connexin 43 Mediates White Adipose Tissue Beiging by Facilitating the Propagation of Sympathetic Neuronal Signals. Cell Metabolism, 2016, 24, 420-433.	7.2	80
53	Hyperglycemia in rodent models of type 2 diabetes requires insulin-resistant alpha cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13217-13222.	3.3	78
54	<scp>MED</scp> 13â€dependent signaling from the heart confers leanness by enhancing metabolism in adipose tissue and liver. EMBO Molecular Medicine, 2014, 6, 1610-1621.	3.3	77

#	Article	IF	CITATIONS
55	Race–ethnic differences in adipokine levels: the Study of Women's Health Across the Nation (SWAN). Metabolism: Clinical and Experimental, 2012, 61, 1261-1269.	1.5	76
56	Adiponectin regulates contextual fear extinction and intrinsic excitability of dentate gyrus granule neurons through AdipoR2 receptors. Molecular Psychiatry, 2017, 22, 1044-1055.	4.1	76
57	Adipocyte-Specific Deletion of Manganese Superoxide Dismutase Protects From Diet-Induced Obesity Through Increased Mitochondrial Uncoupling and Biogenesis. Diabetes, 2016, 65, 2639-2651.	0.3	75
58	Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes \hat{l}^2 -cell regeneration. ELife, 2014, 3, .	2.8	74
59	Obesity and diabetes as comorbidities for COVID-19: Underlying mechanisms and the role of viralâ \in bacterial interactions. ELife, 2020, 9, .	2.8	69
60	First Clinical Release of an Online, Adaptive, Aperture-Based Image-Guided Radiotherapy Strategy in Intensity-Modulated Radiotherapy to Correct for Inter- and Intrafractional Rotations of the Prostate. International Journal of Radiation Oncology Biology Physics, 2012, 83, 1624-1632.	0.4	67
61	Relation of plasma ceramides to visceral adiposity, insulin resistance and the development of type 2 diabetes mellitus: the Dallas Heart Study. Diabetologia, 2018, 61, 2570-2579.	2.9	67
62	Within-Individual Stability of Obesity-Related Biomarkers among Women. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 1291-1293.	1.1	65
63	HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. JCI Insight, 2018, 3, .	2.3	65
64	Adiponectin is an endogenous anti-fibrotic mediator and therapeutic target. Scientific Reports, 2017, 7, 4397.	1.6	64
65	Leptin and cancer: from cancer stem cells to metastasis. Endocrine-Related Cancer, 2011, 18, C25-C29.	1.6	59
66	Renal tubular cell spliced X-box binding protein 1 (Xbp1s) has a unique role in sepsis-induced acute kidney injury and inflammation. Kidney International, 2019, 96, 1359-1373.	2.6	56
67	Critical Role of Matrix Metalloproteinase 14 in Adipose Tissue Remodeling during Obesity. Molecular and Cellular Biology, 2020, 40, .	1.1	56
68	PPAR \hat{I}^3 in Vagal Neurons Regulates High-Fat Diet Induced Thermogenesis. Cell Metabolism, 2014, 19, 722-730.	7.2	55
69	Effects of Adiponectin on Calcium-Handling Proteins in Heart Failure With Preserved Ejection Fraction. Circulation: Heart Failure, 2014, 7, 976-985.	1.6	54
70	Proteinuria Increases Plasma Phosphate by Altering Its Tubular Handling. Journal of the American Society of Nephrology: JASN, 2015, 26, 1608-1618.	3.0	53
71	Adiponectin potentiates the acute effects of leptin in arcuate Pomc neurons. Molecular Metabolism, 2016, 5, 882-891.	3.0	53
72	Vascular Endothelial Growth Factor–DÂ(VEGF-D) Overexpression and Lymphatic Expansion in Murine Adipose Tissue Improves Metabolism in Obesity. American Journal of Pathology, 2019, 189, 924-939.	1.9	53

#	Article	IF	CITATIONS
73	XBP1S Regulates MUC5B in a Promoter Variant–Dependent Pathway in Idiopathic Pulmonary Fibrosis Airway Epithelia. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 220-234.	2.5	53
74	Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance. Scientific Reports, 2015, 5, 18366.	1.6	50
75	Dermal adipocytes and hair cycling: is spatial heterogeneity a characteristic feature of the dermal adipose tissue depot?. Experimental Dermatology, 2016, 25, 258-262.	1.4	50
76	Adipocyte iron levels impinge on a fat-gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity. Cell Metabolism, 2021, 33, 1624-1639.e9.	7.2	50
77	Heart Failure With Preserved Ejection Fraction Induces Beiging in Adipose Tissue. Circulation: Heart Failure, 2016, 9, e002724.	1.6	49
78	MitoNEET-dependent formation of intermitochondrial junctions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8277-8282.	3.3	49
79	Adiponectin modulates ventral tegmental area dopamine neuron activity and anxiety-related behavior through AdipoR1. Molecular Psychiatry, 2019, 24, 126-144.	4.1	49
80	Partial leptin deficiency confers resistance to diet-induced obesity in mice. Molecular Metabolism, 2020, 37, 100995.	3.0	49
81	Rgs16 and Rgs8 in embryonic endocrine pancreas and mouse models of diabetes. DMM Disease Models and Mechanisms, 2010, 3, 567-580.	1.2	48
82	Human endotrophin as a driver of malignant tumor growth. JCI Insight, 2019, 4, .	2.3	48
83	Skin aging: are adipocytes the next target?. Aging, 2016, 8, 1457-1469.	1.4	48
84	Intermittent Hypoxia Exacerbates Pancreatic \hat{l}^2 -Cell Dysfunction in A Mouse Model of Diabetes Mellitus. Sleep, 2013, 36, 1849-1858.	0.6	47
85	Suppressing adipocyte inflammation promotes insulin resistance in mice. Molecular Metabolism, 2020, 39, 101010.	3.0	47
86	Adiponectin Decreases Pulmonary Arterial Remodeling in Murine Models of Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 340-347.	1.4	46
87	Adiponectin alters renal calcium and phosphate excretion through regulation of klotho expression. Kidney International, 2017, 91, 324-337.	2.6	45
88	Cyclin D1 Restrains Oncogene-Induced Autophagy by Regulating the AMPK–LKB1 Signaling Axis. Cancer Research, 2017, 77, 3391-3405.	0.4	45
89	Skin aging as a mechanical phenomenon: The main weak links. Nutrition and Healthy Aging, 2018, 4, 291-307.	0.5	45
90	Obesity dysregulates fasting-induced changes in glucagon secretion. Journal of Endocrinology, 2019, 243, 149-160.	1.2	44

#	Article	IF	Citations
91	The adipokine/ceramide axis: Key aspects of insulin sensitization. Biochimie, 2014, 96, 130-139.	1.3	43
92	Conditional MitoTimer reporter mice for assessment of mitochondrial structure, oxidative stress, and mitophagy. Mitochondrion, 2019, 44, 20-26.	1.6	43
93	The Role of Immature and Mature Adipocytes in Hair Cycling. Trends in Endocrinology and Metabolism, 2019, 30, 93-105.	3.1	42
94	Hyaluronan in adipogenesis, adipose tissue physiology and systemic metabolism. Matrix Biology, 2019, 78-79, 284-291.	1.5	41
95	Spliced X-box Binding Protein 1 Stimulates Adaptive Growth Through Activation of mTOR. Circulation, 2019, 140, 566-579.	1.6	40
96	The Role of Ceramides in Diabetes and Cardiovascular Disease Regulation of Ceramides by Adipokines. Frontiers in Endocrinology, 2020, 11, 569250.	1.5	40
97	ERα upregulates Phd3 to ameliorate HIF-1 induced fibrosis and inflammation in adipose tissue. Molecular Metabolism, 2014, 3, 642-651.	3.0	39
98	Dysregulation of amyloid precursor protein impairs adipose tissue mitochondrial function and promotes obesity. Nature Metabolism, 2019, 1, 1243-1257.	5.1	39
99	Integrated Stress Response Couples Mitochondrial Protein Translation With Oxidative Stress Control. Circulation, 2021, 144, 1500-1515.	1.6	39
100	Differential Binding of Cross-Reactive Anti-DNA Antibodies to Mesangial Cells: The Role of \hat{l}_{\pm} -Actinin. Journal of Immunology, 2006, 176, 7704-7714.	0.4	38
101	Effect of pioglitazone on plasma ceramides in adults with metabolic syndrome. Diabetes/Metabolism Research and Reviews, 2015, 31, 734-744.	1.7	37
102	Adiponectin preserves metabolic fitness during aging. ELife, 2021, 10, .	2.8	37
103	SF-1 expression in the hypothalamus is required for beneficial metabolic effects of exercise. ELife, 2016, 5, .	2.8	37
104	High-Phosphate Diet Induces Exercise Intolerance and Impairs Fatty Acid Metabolism in Mice. Circulation, 2019, 139, 1422-1434.	1.6	36
105	Ceramides and cardiac function in children with chronic kidney disease. Pediatric Nephrology, 2014, 29, 415-422.	0.9	35
106	Hepatocyte toll-like receptor 4 deficiency protects against alcohol-induced fatty liver disease. Molecular Metabolism, 2018, 14, 121-129.	3.0	35
107	Hepatocyte Growth Factor and the Risk of Ischemic Stroke Developing Among Postmenopausal Women. Stroke, 2010, 41, 857-862.	1.0	34
108	Adipose HIF- $1\hat{l}\pm$ causes obesity by suppressing brown adipose tissue thermogenesis. Journal of Molecular Medicine, 2017, 95, 287-297.	1.7	34

#	Article	IF	CITATIONS
109	Adipocyte Xbp1s overexpression drives uridine production and reduces obesity. Molecular Metabolism, 2018, 11, 1-17.	3.0	34
110	The Anatomical Basis for Wrinkles. Aesthetic Surgery Journal, 2014, 34, 227-234.	0.9	33
111	Peroxisome Proliferator-Activated Receptor $\langle i \rangle \hat{i}^3 \langle i \rangle$ and Its Role in Adipocyte Homeostasis and Thiazolidinedione-Mediated Insulin Sensitization. Molecular and Cellular Biology, 2018, 38, .	1.1	33
112	Mitochondrial metabolism is a key regulator of the fibro-inflammatory and adipogenic stromal subpopulations in white adipose tissue. Cell Stem Cell, 2021, 28, 702-717.e8.	5.2	33
113	Short-Term Versus Long-Term Effects of Adipocyte Toll-Like Receptor 4 Activation on Insulin Resistance in Male Mice. Endocrinology, 2017, 158, 1260-1270.	1.4	31
114	Endotrophin, a multifaceted player in metabolic dysregulation and cancer progression, is a predictive biomarker for the response to PPAR \hat{I}^3 agonist treatment. Diabetologia, 2017, 60, 24-29.	2.9	31
115	Intercellular and interorgan crosstalk through adipocyte extracellular vesicles. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 61-69.	2.6	31
116	SREBP-regulated adipocyte lipogenesis is dependent on substrate availability and redox modulation of mTORC1. JCI Insight, 2019, 4, .	2.3	31
117	Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease. Microbes and Infection, 2014, 16, 893-901.	1.0	30
118	Glucose-regulated protein 78 is essential for cardiac myocyte survival. Cell Death and Differentiation, 2018, 25, 2181-2194.	5.0	30
119	COL6A3â€derived endotrophin links reciprocal interactions among hepatic cells in the pathology of chronic liver disease. Journal of Pathology, 2019, 247, 99-109.	2.1	30
120	Diffuse vesicular distribution of Rab3D in the polarized neuroendocrine cell line AtT-20. FEBS Letters, 1995, 368, 271-275.	1.3	29
121	Cyclin and Caveolin Expression in an Acute Model of Murine Chagasic Myocarditis. Cell Cycle, 2006, 5, 107-112.	1.3	29
122	Serum Amyloid A3 Gene Expression in Adipocytes is an Indicator of the Interaction with Macrophages. Scientific Reports, 2016, 6, 38697.	1.6	29
123	Preexisting and inducible endotoxemia as crucial contributors to the severity of COVID-19 outcomes. PLoS Pathogens, 2021, 17, e1009306.	2.1	29
124	Comparison of two different rectal spacers in prostate cancer external beam radiotherapy in terms of rectal sparing and volume consistency. Radiotherapy and Oncology, 2015, 116, 221-225.	0.3	27
125	Sex differences in adult rat insulin and glucose responses to arginine: programming effects of neonatal separation, hypoxia, and hypothermia. Physiological Reports, 2016, 4, e12972.	0.7	27
126	Hyaluronan in adipose tissue: Beyond dermal filler and therapeutic carrier. Science Translational Medicine, 2016, 8, 323ps4.	5.8	27

#	Article	IF	CITATIONS
127	Evolutionarily Conserved Role of Calcineurin in Phosphodegron-Dependent Degradation of Phosphodiesterase 4D. Molecular and Cellular Biology, 2010, 30, 4379-4390.	1.1	26
128	Dapagliflozin suppresses glucagon signaling in rodent models of diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6611-6616.	3.3	26
129	Adiponectin protects against incident hypertension independent of body fat distribution: observations from the Dallas Heart Study. Diabetes/Metabolism Research and Reviews, 2017, 33, e2840.	1.7	26
130	Caveolin-1 as a pathophysiological factor and target in psoriasis. Npj Aging and Mechanisms of Disease, 2019, 5, 4.	4.5	26
131	A feed-forward regulatory loop in adipose tissue promotes signaling by the hepatokine FGF21. Genes and Development, 2021, 35, 133-146.	2.7	26
132	ATF4 Protects the Heart From Failure by Antagonizing Oxidative Stress. Circulation Research, 2022, 131, 91-105.	2.0	26
133	Associations of testosterone and sex hormone binding globulin with adipose tissue hormones in midlife women. Obesity, 2013, 21, 629-636.	1.5	25
134	The dysfunctional adipocyte â€" a cancer cell's best friend. Nature Reviews Endocrinology, 2018, 14, 132-134.	4.3	25
135	Adipocyte Gs but not Gi signaling regulates whole-body glucose homeostasis. Molecular Metabolism, 2019, 27, 11-21.	3.0	25
136	Caveolin-1 in skin aging – From innocent bystander to major contributor. Ageing Research Reviews, 2019, 55, 100959.	5.0	25
137	The impact of endotrophin on the progression of chronic liver disease. Experimental and Molecular Medicine, 2020, 52, 1766-1776.	3.2	25
138	Hepatic GALE Regulates Whole-Body Glucose Homeostasis by Modulating <i>Tff3</i> Expression. Diabetes, 2017, 66, 2789-2799.	0.3	24
139	PKM1 Exerts Critical Roles in Cardiac Remodeling Under Pressure Overload in the Heart. Circulation, 2021, 144, 712-727.	1.6	23
140	Cannabinoid receptor 1 signaling in hepatocytes and stellate cells does not contribute to NAFLD. Journal of Clinical Investigation, 2021, 131, .	3.9	23
141	Lumenal protein sorting to the constitutive secretory pathway of a regulated secretory cell. Journal of Cell Science, 2006, 119, 1833-1842.	1.2	22
142	Retrograde Lymph Flow Leads to Chylothorax in Transgenic Mice with Lymphatic Malformations. American Journal of Pathology, 2017, 187, 1984-1997.	1.9	22
143	Lowering ceramides to overcome diabetes. Science, 2019, 365, 319-320.	6.0	22
144	Caveolin-1 as a target in prevention and treatment of hypertrophic scarring. Npj Regenerative Medicine, 2019, 4, 9.	2.5	22

#	Article	IF	Citations
145	Loss of the liver X receptor LXRÎ \pm /Î 2 in peripheral sensory neurons modifies energy expenditure. ELife, 2015, 4, .	2.8	21
146	Glucagon therapeutics: Dawn of a new era for diabetes care. Diabetes/Metabolism Research and Reviews, 2016, 32, 660-665.	1.7	20
147	Are dermal adipocytes involved in psoriasis?. Experimental Dermatology, 2016, 25, 812-813.	1.4	20
148	Remodeling of Murine Mammary Adipose Tissue during Pregnancy, Lactation, and Involution. Journal of Mammary Gland Biology and Neoplasia, 2019, 24, 207-212.	1.0	20
149	Serum adiponectin is related to plasma high-density lipoprotein cholesterol but not to plasma insulin-concentration in healthy children: the FLVS II study. Metabolism: Clinical and Experimental, 2006, 55, 1171-1176.	1.5	19
150	Role of Extracellular Signal-regulated Kinase 5 in Adipocyte Signaling. Journal of Biological Chemistry, 2014, 289, 6311-6322.	1.6	19
151	Klotho regulation by albuminuria is dependent on ATF3 and endoplasmic reticulum stress. FASEB Journal, 2020, 34, 2087-2104.	0.2	19
152	Role of ceramide-to-dihydroceramide ratios for insulin resistance and non-alcoholic fatty liver disease in humans. BMJ Open Diabetes Research and Care, 2020, 8, e001860.	1.2	19
153	Adipocyteâ€myofibroblast transition as a possible pathophysiological step in androgenetic alopecia. Experimental Dermatology, 2017, 26, 522-523.	1.4	18
154	Dermal adipocytes contribute to the metabolic regulation of dermal fibroblasts. Experimental Dermatology, 2021, 30, 102-111.	1.4	18
155	General theory of skin reinforcement. PLoS ONE, 2017, 12, e0182865.	1.1	18
156	Differential transendothelial transport of adiponectin complexes. Cardiovascular Diabetology, 2014, 13, 47.	2.7	17
157	Characterization of ALTO-encoding circular RNAs expressed by Merkel cell polyomavirus and trichodysplasia spinulosa polyomavirus. PLoS Pathogens, 2021, 17, e1009582.	2.1	17
158	Ablation of Calcineurin $\hat{Al^2}$ Reveals Hyperlipidemia and Signaling Cross-talks with Phosphodiesterases. Journal of Biological Chemistry, 2013, 288, 3477-3488.	1.6	16
159	Peroxisome proliferator-activated receptor \hat{l}^3 agonists inhibit adipocyte expression of $\hat{l}\pm 1$ -acid glycoprotein. Cell Biology International, 2007, 31, 586-591.	1.4	15
160	The MMP14–caveolin axis and its potential relevance for lipoedema. Nature Reviews Endocrinology, 2020, 16, 669-674.	4.3	15
161	Adipose tissue hyaluronan production improves systemic glucose homeostasis and primes adipocytes for CL 316,243-stimulated lipolysis. Nature Communications, 2021, 12, 4829.	5.8	15
162	Predominant expression of the mitochondrial dicarboxylate carrier in white adipose tissue. Biochemical Journal, 1999, 344, 313.	1.7	14

#	Article	IF	CITATIONS
163	Fat tissue regulates the pathogenesis and severity of cardiomyopathy in murine chagas disease. PLoS Neglected Tropical Diseases, 2021, 15, e0008964.	1.3	14
164	Management of cranial and craniofacial bone defects with prefabricated individual titanium implants: follow-up and evaluation of 166 patients with 169 titanium implants from 1994 to 2000. International Journal of Computer Assisted Radiology and Surgery, 2006, 1, 197-203.	1.7	13
165	Dietary n-3 polyunsaturated fatty acids fail to reduce prostate tumorigenesis in the PB-ErbB-2 x Pten ^{+/-} preclinical mouse model. Cell Cycle, 2010, 9, 1824-1829.	1.3	13
166	Adiponectin. Circulation Research, 2016, 119, 407-408.	2.0	13
167	Imaging Metabolically Active Fat: A Literature Review and Mechanistic Insights. International Journal of Molecular Sciences, 2019, 20, 5509.	1.8	13
168	Caveolin as a Universal Target in Dermatology. International Journal of Molecular Sciences, 2020, 21, 80.	1.8	13
169	Regulation of cold-induced thermogenesis by the RNA binding protein FAM195A. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
170	Adiponectin and cardiometabolic trait and mortality: where do we go?. Cardiovascular Research, 2022, 118, 2074-2084.	1.8	13
171	New zoning laws enforced by glucagon. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4308-4310.	3.3	12
172	Utility of Adipocyte Fractions in Fat Grafting in an Athymic Rat Model. Aesthetic Surgery Journal, 2018, 38, 1363-1373.	0.9	12
173	Mouse Adipose Tissue Protein Extraction. Bio-protocol, 2020, 10, e3631.	0.2	12
174	The metabolic syndrome, thiazolidinediones, and implications for intersection of chronic and inflammatory disease. Molecular Metabolism, 2022, 55, 101409.	3.0	12
175	Preface. Best Practice and Research in Clinical Endocrinology and Metabolism, 2014, 28, 1-2.	2.2	11
176	Receptors grease the metabolic wheels. Nature, 2017, 544, 42-43.	13.7	11
177	Pathological Type-2 Immune Response, Enhanced Tumor Growth, and Glucose Intolerance in Retnlβ (RELMβ) Null Mice. American Journal of Pathology, 2016, 186, 2404-2416.	1.9	10
178	Caveolinâ€1 as a possible target in the treatment for acne. Experimental Dermatology, 2020, 29, 177-183.	1.4	10
179	Isolation and Quantitation of Adiponectin Higher Order Complexes. Methods in Enzymology, 2014, 537, 243-259.	0.4	9
180	Alterations in pancreatic \hat{l}^2 cell function and Trypanosoma cruzi infection: evidence from human and animal studies. Parasitology Research, 2017, 116, 827-838.	0.6	9

#	Article	IF	Citations
181	Induction of Effective Immunity against Trypanosoma cruzi. Infection and Immunity, 2020, 88, .	1.0	9
182	Therapeutic vaccination using minimal HPV16 epitopes in a novel MHC-humanized murine HPV tumor model. Oncolmmunology, 2019, 8, e1524694.	2.1	8
183	Endotrophin: Nominated for best supporting actor in the fibro-inflammatory saga. EBioMedicine, 2021, 69, 103447.	2.7	8
184	Chapter 23 Cross-Linking Reagents as Tools for Identifying Components of the Yeast Mitochondrial Protein Import Machinery. Methods in Cell Biology, 1991, 34, 419-426.	0.5	7
185	In Vivo ZIMIR Imaging of Mouse Pancreatic Islet Cells Shows Oscillatory Insulin Secretion. Frontiers in Endocrinology, 2021, 12, 613964.	1.5	7
186	A Prospective Analysis of Plasma Adiponectin and Risk of Incident Cancer: The Dallas Heart Study. Journal of the National Comprehensive Cancer Network: JNCCN, 2015, 13, 873-878.	2.3	7
187	Fibrosis—streaks and splatters: Some things are not always what they seem to be. Obesity, 2016, 24, 552-553.	1.5	6
188	\hat{l}^21 Syntrophin Supports Autophagy Initiation and Protects against Cerulein-Induced Acute Pancreatitis. American Journal of Pathology, 2019, 189, 813-825.	1.9	6
189	Skin aging: Dermal adipocytes metabolically reprogram dermal fibroblasts. BioEssays, 2022, 44, e2100207.	1.2	6
190	Adult pancreatic islet endocrine cells emerge as fetal hormone-expressing cells. Cell Reports, 2022, 38, 110377.	2.9	6
191	Quantitative phosphoproteomic analyses identify STK11IP as a lysosome-specific substrate of mTORC1 that regulates lysosomal acidification. Nature Communications, 2022, 13, 1760.	5.8	6
192	Impact of the loss of caveolin-1 on lung mass and cholesterol metabolism in mice with and without the lysosomal cholesterol transporter, Niemann–Pick type C1. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 995-1002.	1.2	5
193	Tissue-specific disruption of <i>Kbtbd2</i> uncovers adipocyte-intrinsic and -extrinsic features of the <i>teeny</i> lipodystrophy syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11829-11835.	3.3	5
194	Activating Connexin43 gap junctions primes adipose tissue for therapeutic intervention. Acta Pharmaceutica Sinica B, 2022, 12, 3063-3072.	5.7	5
195	Elevated adiponectin prevents HIV protease inhibitor toxicity and preserves cerebrovascular homeostasis in mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1228-1235.	1.8	4
196	Serum levels of endotrophin are associated with nonalcoholic steatohepatitis. Scandinavian Journal of Gastroenterology, 2021, 56, 437-442.	0.6	4
197	Phenotypical Conversions of Dermal Adipocytes as Pathophysiological Steps in Inflammatory Cutaneous Disorders. International Journal of Molecular Sciences, 2022, 23, 3828.	1.8	4
198	Overexpression of ST5, an activator of Ras, has no effect on \hat{I}^2 -cell proliferation in adult mice. Molecular Metabolism, 2018, 11, 212-217.	3.0	3

#	Article	IF	Citations
199	PHOSPHO1 puts the breaks on thermogenesis in brown adipocytes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16726-16728.	3.3	3
200	Slim without the gym â€" the magic of chilling out. Nature Reviews Endocrinology, 2016, 12, 252-254.	4.3	2
201	Epigenetic regulation of cardiometabolic disease by HDAC-BET association. Journal of Molecular and Cellular Cardiology, 2018, 124, 99.	0.9	2
202	Fasting and Glucose-Stimulated Changes in Plasma Glucagon in Pancreatic Cancer. Pancreas, 2019, 48, e1-e3.	0.5	2
203	From friend to foe: Pro-apoptotic action of nuclear ARC in diabetes. Developmental Cell, 2021, 56, 717-718.	3.1	2
204	TLR4-Induced Local Adipose Inflammation Critically Regulates Glucose Homeostasis. Diabetes, 2018, 67, 2032-P.	0.3	2
205	Fasting-Induced Changes in Glucagon Secretion Are Dysregulated in Obesity. Diabetes, 2018, 67, .	0.3	2
206	Adiponectin Modulates Pulmonary Vascular Remodeling By Inhibiting Pulmonary Artery Smooth Muscle Cell Proliferation. , 2010, , .		1
207	Editorial for the directed issue: "Metabolic pathways in cancer― International Journal of Biochemistry and Cell Biology, 2011, 43, 948-949.	1.2	1
208	Fabp4, a new player in the adipo-pancreatic axis. Molecular Metabolism, 2014, 3, 347-348.	3.0	1
209	Pas de Deux. Circulation Research, 2017, 120, 762-764.	2.0	1
210	5.4. Die WÄ ¤ ler der Kleinparteien. , 2014, , 155-168.		1
211	The effects of pioglitazone treatment on pancreatic cancer-related insulin resistance Journal of Clinical Oncology, 2017, 35, 329-329.	0.8	1
212	VEGF-A-Expressing Adipose Tissue Shows Rapid Beiging, Enhanced Survival after Transplantation. Diabetes, 2018, 67, 279-LB.	0.3	1
213	A tribute to Roger H. Unger (1924–2020). Journal of Clinical Investigation, 2020, 130, 6191-6193.	3.9	1
214	Response to Kunos et al. and Lotersztajn and Mallat. Journal of Clinical Investigation, 2022, 132, .	3.9	1
215	Transgenic Mice Overexpressing Adiponectin Are Protected Against Insulin Resistance Induced By Intermittent Hypoxia. , 2010 , , .		0
216	Continuous Hypoxia Suppresses Adiponectin Secretion By Adipocytes Through Activation Of The Unfolded Protein Response. , 2011, , .		0

#	Article	IF	CITATIONS
217	YIA 02-04 RELATIONSHIP BETWEEN LEPTIN AND INCIDENT HYPERTENSION; OBSERVATIONS FROM THE DALLAS HEART STUDY. Journal of Hypertension, 2016, 34, e203.	0.3	0
218	Thromboxane A2is a key regulator of pathogenesis during Trypanosoma cruziin fection. Journal of Cell Biology, 2007, 177, i4-i4.	2.3	0
219	Transendothelial Transport May Determine Adiponectin Oligomer Functions. FASEB Journal, 2010, 24, 975.17.	0.2	0
220	Rgs16 is an early marker for islet formation and beta cell expansion in diabetics. FASEB Journal, 2010, 24, 587.1.	0.2	0
221	Rgs16 is a pancreatic reporter of chronic hyperglycemia in diabetes. FASEB Journal, 2012, 26, 759.6.	0.2	0
222	Plasma adiponectin to predict incident cancer in a large multiethnic population-based cohort study Journal of Clinical Oncology, 2013, 31, 1560-1560.	0.8	0
223	Association of adiponectin in patatin-like phospholipase domain-containing 3 (PNPLA3) associated hepatic steatosis Journal of Clinical Oncology, 2014, 32, 184-184.	0.8	0
224	The effects of pioglitazone treatment on pancreatic cancer-related insulin resistance Journal of Clinical Oncology, 2017, 35, e15752-e15752.	0.8	0
225	Abstract SY28-01: Stromal contributions of adipocytes to cancer. , 2017, , .		0
226	Targeting the Amyloid Precursor Protein (APP) to Mitochondria of White Adipose Tissues Triggers Mitochondrial Dysfunction and Obesity. Diabetes, 2018, 67, .	0.3	0
227	Thiazolidinediones' Insulin-Sensitizing Properties Depend on Adiponectin-Mediated Reductions in Certain Ceramide Species. Diabetes, 2018, 67, 277-LB.	0.3	0