List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4950443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Business Models, Including Higher Value Products for the New Circular, Resource-Efficient Biobased Industry. Frontiers in Sustainability, 2022, 3, .	2.6	4
2	Metagenomic analysis of a keratin-degrading bacterial consortium provides insight into the keratinolytic mechanisms. Science of the Total Environment, 2021, 761, 143281.	8.0	25
3	lonozyme: ionic liquids as solvent and stabilizer for efficient bioactivation of CO ₂ . Green Chemistry, 2021, 23, 6990-7000.	9.0	13
4	Exceptionally rich keratinolytic enzyme profile found in the rare actinomycetes Amycolatopsis keratiniphila D2T. Applied Microbiology and Biotechnology, 2021, 105, 8129-8138.	3.6	8
5	Conserved unique peptide patterns (CUPP) online platform: peptide-based functional annotation of carbohydrate active enzymes. Nucleic Acids Research, 2020, 48, W110-W115.	14.5	35
6	Advances in bio-nylon 5X: discovery of new lysine decarboxylases for the high-level production of cadaverine. Green Chemistry, 2020, 22, 8656-8668.	9.0	29
7	Comprehensive chemotaxonomic and genomic profiling of a biosynthetically talented Australian fungus, Aspergillus burnettii sp. nov Fungal Genetics and Biology, 2020, 143, 103435.	2.1	19
8	The potential of integrated bio- and chemical-engineering—for a more sustainable world. Green Chemical Engineering, 2020, 1, 9-15.	6.3	10
9	Biofouling Mitigation Approaches during Water Recovery from Fermented Broth via Forward Osmosis. Membranes, 2020, 10, 307.	3.0	8
10	Novel keratinolytic enzymes, discovered from a talented and efficient bacterial keratin degrader. Scientific Reports, 2020, 10, 10033.	3.3	16
11	Fungal Biotechnology: Unlocking the Full Potential of Fungi for a More Sustainable World. Grand Challenges in Biology and Biotechnology, 2020, , 3-32.	2.4	5
12	Fungiculture in Termites Is Associated with a Mycolytic Gut Bacterial Community. MSphere, 2019, 4, .	2.9	35
13	Enzymes of early-diverging, zoosporic fungi. Applied Microbiology and Biotechnology, 2019, 103, 6885-6902.	3.6	30
14	Proteomic enzyme analysis of the marine fungus Paradendryphiella salina reveals alginate lyase as a minimal adaptation strategy for brown algae degradation. Scientific Reports, 2019, 9, 12338.	3.3	34
15	Green seaweeds (Ulva fasciata sp.) as nitrogen source for fungal cellulase production. World Journal of Microbiology and Biotechnology, 2019, 35, 82.	3.6	8
16	Peptide-based functional annotation of carbohydrate-active enzymes by conserved unique peptide patterns (CUPP). Biotechnology for Biofuels, 2019, 12, 102.	6.2	55
17	Potentials and possible safety issues of using biorefinery products in food value chains. Trends in Food Science and Technology, 2019, 84, 7-11.	15.1	25
18	Identification and characterization of GH11 xylanase and GH43 xylosidase from the chytridiomycetous fungus, Rhizophlyctis rosea. Applied Microbiology and Biotechnology, 2019, 103, 777-791.	3.6	22

#	Article	IF	CITATIONS
19	Origin of fungal biomass degrading enzymes: Evolution, diversity and function of enzymes of early lineage fungi. Fungal Biology Reviews, 2019, 33, 82-97.	4.7	36
20	Enzyme Activities at Different Stages of Plant Biomass Decomposition in Three Species of Fungus-Growing Termites. Applied and Environmental Microbiology, 2018, 84, .	3.1	31
21	Enzymatic production of wheat and ryegrass derived xylooligosaccharides and evaluation of their in vitro effect on pig gut microbiota. Biomass Conversion and Biorefinery, 2018, 8, 497-507.	4.6	17
22	What has happened to the "aquatic phycomycetes―(sensu Sparrow)? Part I: A brief historical perspective. Fungal Biology Reviews, 2018, 32, 26-33.	4.7	8
23	What has happened to the "aquatic phycomycetes―(sensu Sparrow)? Part II: Shared properties of zoosporic true fungi and fungus-like microorganisms. Fungal Biology Reviews, 2018, 32, 52-61.	4.7	5
24	Enrichment of syngas-converting mixed microbial consortia for ethanol production and thermodynamics-based design of enrichment strategies. Biotechnology for Biofuels, 2018, 11, 198.	6.2	32
25	Cellulase production by white-rot basidiomycetous fungi: solid-state versus submerged cultivation. Applied Microbiology and Biotechnology, 2018, 102, 5827-5839.	3.6	39
26	Structure, computational and biochemical analysis of PcCel45A endoglucanase from Phanerochaete chrysosporium and catalytic mechanisms of GH45 subfamily C members. Scientific Reports, 2018, 8, 3678.	3.3	14
27	Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products. Microbiology Spectrum, 2017, 5, .	3.0	16
28	Enzyme Enhanced Protein Recovery from Green Biomass Pulp. Waste and Biomass Valorization, 2017, 8, 1257-1264.	3.4	24
29	Diversity of microbial carbohydrate-active enzymes in Danish anaerobic digesters fed with wastewater treatment sludge. Biotechnology for Biofuels, 2017, 10, 158.	6.2	35
30	Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products. , 2017, , 1027-1048.		3
31	A New Functional Classification of Glucuronoyl Esterases by Peptide Pattern Recognition. Frontiers in Microbiology, 2017, 08, 309.	3.5	22
32	Aspergillus hancockii sp. nov., a biosynthetically talented fungus endemic to southeastern Australian soils. PLoS ONE, 2017, 12, e0170254.	2.5	35
33	Characterization of a new <i>sn</i> â€1,3â€regioselective triacylglycerol lipase from <i>Malbranchea cinnamomea</i> . Biotechnology and Applied Biochemistry, 2016, 63, 471-478.	3.1	11
34	Statistical model semiquantitatively approximates arabinoxylooligosaccharides' structural diversity. Carbohydrate Research, 2016, 426, 9-14.	2.3	4
35	Highâ€ŧhroughput microarray mapping of cell wall polymers in roots and tubers during the viscosityâ€ŧeducing process. Biotechnology and Applied Biochemistry, 2016, 63, 178-189.	3.1	3
36	Microbial decomposition of keratin in nature—a new hypothesis of industrial relevance. Applied Microbiology and Biotechnology, 2016, 100, 2083-2096.	3.6	191

#	Article	IF	CITATIONS
37	Acidic–alkaline ferulic acid esterase from Chaetomium thermophilum var. dissitum: Molecular cloning and characterization of recombinant enzyme expressed in Pichia pastoris. Biocatalysis and Agricultural Biotechnology, 2016, 5, 48-55.	3.1	4
38	New insights into the molecular mechanism of methanol-induced inactivation of <i>Thermomyces lanuginosus</i> lipase: a molecular dynamics simulation study. Molecular Simulation, 2016, 42, 434-445.	2.0	17
39	Hydrolysis of Wheat Arabinoxylan by Two Acetyl Xylan Esterases from Chaetomium thermophilum. Applied Biochemistry and Biotechnology, 2015, 175, 1139-1152.	2.9	8
40	Transcriptome of an entomophthoralean fungus (Pandora formicae) shows molecular machinery adjusted for successful host exploitation and transmission. Journal of Invertebrate Pathology, 2015, 128, 47-56.	3.2	42
41	Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases. Enzyme and Microbial Technology, 2015, 73-74, 9-19.	3.2	22
42	Genome and secretome analyses provide insights into keratin decomposition by novel proteases from the non-pathogenic fungus Onygena corvina. Applied Microbiology and Biotechnology, 2015, 99, 9635-9649.	3.6	52
43	Classification of fungal and bacterial lytic polysaccharide monooxygenases. BMC Genomics, 2015, 16, 368.	2.8	84
44	The importance of fungi and mycology for addressing major global challenges. IMA Fungus, 2014, 5, 463-471.	3.8	46
45	The prominent role of fungi and fungal enzymes in the ant–fungus biomass conversion symbiosis. Applied Microbiology and Biotechnology, 2014, 98, 4839-4851.	3.6	23
46	Identification of a β-glucosidase from the Mucor circinelloides genome by peptide pattern recognition. Enzyme and Microbial Technology, 2014, 67, 47-52.	3.2	30
47	Several Genes Encoding Enzymes with the Same Activity Are Necessary for Aerobic Fungal Degradation of Cellulose in Nature. PLoS ONE, 2014, 9, e114138.	2.5	37
48	Cellulolytic potential of thermophilic species from four fungal orders. AMB Express, 2013, 3, 47.	3.0	54
49	The fungal symbiont of Acromyrmex leaf-cutting ants expresses the full spectrum of genes to degrade cellulose and other plant cell wall polysaccharides. BMC Genomics, 2013, 14, 928.	2.8	47
50	Function-Based Classification of Carbohydrate-Active Enzymes by Recognition of Short, Conserved Peptide Motifs. Applied and Environmental Microbiology, 2013, 79, 3380-3391.	3.1	65
51	The importance of fungi and of mycology for a global development of the bioeconomy. IMA Fungus, 2012, 3, 87-92.	3.8	36
52	The ectomycorrhizal fungus <i>Paxillus involutus</i> converts organic matter in plant litter using a trimmed brownâ€rot mechanism involving Fenton chemistry. Environmental Microbiology, 2012, 14, 1477-1487.	3.8	173
53	Secretome of fungus-infected aphids documents high pathogen activity and weak host response. Fungal Genetics and Biology, 2011, 48, 343-352.	2.1	30
54	A global need for women's biotech leadership. Nature Biotechnology, 2011, 29, 948-949.	17.5	2

#	Article	IF	CITATIONS
55	The importance of fungi for a more sustainable future on our planet. Fungal Biology Reviews, 2010, 24, 90-92.	4.7	16
56	Screening for cellulose and hemicellulose degrading enzymes from the fungal genus Ulocladium. International Biodeterioration and Biodegradation, 2009, 63, 484-489.	3.9	33
57	The 7 Aarhus Statements on Climate Change. IOP Conference Series: Earth and Environmental Science, 2009, 8, 011002.	0.3	1
58	Towards a molecular understanding of symbiont function: Identification of a fungal gene for the degradation of xylan in the fungus gardens of leaf-cutting ants. BMC Microbiology, 2008, 8, 40.	3.3	60
59	High-level expression of the native barley α-amylase/subtilisin inhibitor in Pichia pastoris. Journal of Biotechnology, 2008, 133, 424-432.	3.8	10
60	Deacylation studies on furanose triesters using an immobilized lipase: Synthesis of a key precursor for bicyclonucleosides. Chemical Communications, 2007, , 2616.	4.1	21
61	Selective biocatalytic deacylation studies on furanose triesters: a novel and efficient approach towards bicyclonucleosides. Organic and Biomolecular Chemistry, 2007, 5, 3524.	2.8	18
62	Solistatinol, a novel phenolic compactin analogue from Penicillium solitum. Tetrahedron Letters, 2007, 48, 1261-1264.	1.4	14
63	Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery. International Journal of Hydrogen Energy, 2007, 32, 4135-4141.	7.1	77
64	Discovery, cloning and heterologous expression of secreted potato proteins reveal erroneous pre-mRNA splicing in Aspergillus oryzae. Journal of Biotechnology, 2006, 126, 265-276.	3.8	15
65	Beringian Paleoecology Inferred from Permafrost-Preserved Fungal DNA. Applied and Environmental Microbiology, 2005, 71, 1012-1017.	3.1	148
66	Culture independent PCR: an alternative enzyme discovery strategy. Journal of Microbiological Methods, 2005, 60, 63-71.	1.6	19
67	Remodelling Pectin Structure In Potato. Developments in Plant Genetics and Breeding, 2000, 6, 245-256.	0.6	10
68	Using molecular techniques to identify new microbial biocatalysts. Trends in Biotechnology, 1998, 16, 265-272.	9.3	31
69	Lauritz William Olson, 1945–1992. Mycologia, 1996, 88, 151-157.	1.9	0
70	Microbial metabolites - an infinite source of novel chemistry. Pure and Applied Chemistry, 1996, 68, 745-748.	1.9	13
71	Microbial fungicides-the natural choice. Pest Management Science, 1993, 39, 155-160.	0.4	27
72	Xanthofusin, an antifungal tetronic acid from Fusicoccum sp.: production, isolation and Structure Journal of Antibiotics, 1993, 46, 1013-1015.	2.0	6

#	Article	IF	CITATIONS
73	Microbes and Microbial Products in Plant Protection. , 1992, , 252-270.		9
74	Zoosporogenesis in Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew. Nordic Journal of Botany, 1989, 8, 497-504.	0.5	28
75	Internal mycelium of Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew. Nordic Journal of Botany, 1989, 8, 505-510.	0.5	6
76	The zoospore of Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew. Nordic Journal of Botany, 1989, 8, 511-516.	0.5	9
77	Ultrastructural Studies of Zoosporangium and Resting Sporangium of Synchytrium desmodii. Journal of Phytopathology, 1989, 125, 361-371.	1.0	2
78	Detection of potato leaf roll virus and potato viruses M, S, X and Y by dot immunobinding on plain paper. Potato Research, 1988, 31, 367-373.	2.7	18
79	The effect of monensin on gametogenesis and zoosporogenesis in the aquatic fungus,Allomyces macrogynus. Protoplasma, 1986, 133, 129-139.	2.1	15
80	Dot immuno binding (DIB) for detection of virus in seed. Canadian Journal of Plant Pathology, 1986, 8, 373-379.	1.4	20
81	Pearl millet downy mildew (Sclerospora graminicola): Zoosporogenesis. Protoplasma, 1984, 119, 178-187.	2.1	12
82	Abnormal spore cleavage: Abnormal spores of Allomyces macrogynus. Nordic Journal of Botany, 1983, 3, 657-664.	0.5	9
83	Osmotic regulation of the uniflagellate phycomycete spore. Nordic Journal of Botany, 1983, 3, 665-672.	0.5	3
84	The gamma body: A vesicle generating structure. Nordic Journal of Botany, 1983, 3, 673-680.	0.5	14
85	Germination and parasitation of the resting sporangia ofSynchytrium endobioticum. Protoplasma, 1981, 106, 69-82.	2.1	17
86	Development of the resting sporangia ofSynchytrium endobioticum, the causal agent of potato wart disease. Protoplasma, 1981, 106, 83-95.	2.1	14
87	Development of the zoosporangia ofSynchytrium endobioticum, the causal agent of potato wart disease. Protoplasma, 1981, 106, 97-108.	2.1	11
88	The endobiotic thallus ofPhysoderma maydis, the causal agent ofPhysoderma disease of maize. Protoplasma, 1980, 103, 1-16.	2.1	3
89	Germination of the resting sporangia ofPhysoderma maydis, the causal agent ofPhysoderma disease of maize. Protoplasma, 1980, 102, 323-342.	2.1	18
90	Transfer of the physodermataceae from the chytridiales to the blastocladiales. Transactions of the British Mycological Society, 1980, 74, 449-457.	0.6	13

#	Article	IF	CITATIONS
91	Virusâ€like Particles in <i>Synchytrium endobioticum</i> the Infectious Agent of Potato Wart Disease. Journal of Phytopathology, 1979, 95, 217-227.	1.0	2
92	The zoospore and meiospore of the aquatic phycomyceteCatenaria anguillulae. Protoplasma, 1978, 94, 53-71.	2.1	14
93	The meiospore ofPhysoderma maydis. The causal agent ofPhysoderma disease of maize. Protoplasma, 1978, 97, 275-290.	2.1	18
94	Synchytrium endobioticum and Potato Virus X. Journal of Phytopathology, 1978, 92, 132-142.	1.0	7
95	Root-inhabiting Olpidium species: The O. radicale complex. Transactions of the British Mycological Society, 1977, 69, 377-384.	0.6	33
96	Some bog chytrids. Canadian Journal of Botany, 1977, 55, 1879-1890.	1.1	14
97	The zoospore ofPhlyctochytrium aestuarii. Protoplasma, 1977, 93, 27-43.	2.1	18
98	Experiments on Establishing BSMV Infections in three Phytopathogenic Fungi. Journal of Phytopathology, 1977, 90, 184-188.	1.0	3
99	Augusta Disease in Tulips The Spread of TNV to the Offspring and the Occurrence of Latent Infections. Journal of Phytopathology, 1977, 88, 369-371.	1.0	0
100	The flagellar apparatus and striated rhizoplast of the zoospore ofOlpidium brassicae. Protoplasma, 1976, 89, 339-351.	2.1	13
101	The zoospore ofOlpidium brassicae. Protoplasma, 1976, 90, 33-45.	2.1	25
102	Infection of Daucus carota by Tobacco Necrosis Virus. Journal of Phytopathology, 1975, 83, 136-143.	1.0	9
103	Beyond ruminants: discussing opportunities for alternative pasture uses in New Zealand. Journal of New Zealand Grasslands, 0, , 217-222.	0.0	2
104	Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems – A Selection of Case Studies. Frontiers in Microbiology, 0, 13, .	3.5	10