Yana Pikman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4950396/publications.pdf Version: 2024-02-01

Υλιλ Ρικμανι

#	Article	IF	CITATIONS
1	Targeting serine hydroxymethyltransferases 1 and 2 for T-cell acute lymphoblastic leukemia therapy. Leukemia, 2022, 36, 348-360.	3.3	23
2	The menin-MLL1 interaction is a molecular dependency in <i>NUP98</i> -rearranged AML. Blood, 2022, 139, 894-906.	0.6	42
3	SHMT2 inhibition disrupts the TCF3 transcriptional survival program in Burkitt lymphoma. Blood, 2022, 139, 538-553.	0.6	27
4	Rapid next-generation sequencing aids in diagnosis of transient abnormal myelopoiesis in a phenotypically normal newborn. Blood Advances, 2022, 6, 2893-2896.	2.5	2
5	Unleashing Cell-Intrinsic Inflammation as a Strategy to Kill AML Blasts. Cancer Discovery, 2022, 12, 1760-1781.	7.7	15
6	Hypoxic, glycolytic metabolism is a vulnerability of B-acute lymphoblastic leukemia-initiating cells. Cell Reports, 2022, 39, 110752.	2.9	5
7	IKAROS and MENIN coordinate therapeutically actionable leukemogenic gene expression in MLL-r acute myeloid leukemia. Nature Cancer, 2022, 3, 595-613.	5.7	16
8	Identification of prognostic factors in childhood Tâ€cell acute lymphoblastic leukemia: Results from DFCI ALL Consortium Protocols 05â€001 and 11â€001. Pediatric Blood and Cancer, 2021, 68, e28719.	0.8	26
9	Matched Targeted Therapy for Pediatric Patients with Relapsed, Refractory, or High-Risk Leukemias: A Report from the LEAP Consortium. Cancer Discovery, 2021, 11, 1424-1439.	7.7	16
10	Targeting acute myeloid leukemia dependency on VCP-mediated DNA repair through a selective second-generation small-molecule inhibitor. Science Translational Medicine, 2021, 13, .	5.8	29
11	Targeting the Ras pathway in pediatric hematologic malignancies. Current Opinion in Pediatrics, 2021, 33, 49-58.	1.0	5
12	Alisertib Synergistically Strengthens the Anti-Leukemia Activity of Venetoclax in <i>TCF3-Hlf</i> B-ALL. Blood, 2021, 138, 705-705.	0.6	0
13	Resistance Mechanisms to SYK Inhibition in Acute Myeloid Leukemia. Cancer Discovery, 2020, 10, 214-231.	7.7	27
14	The Folate Cycle Enzyme MTHFR Is a Critical Regulator of Cell Response to MYC-Targeting Therapies. Cancer Discovery, 2020, 10, 1894-1911.	7.7	13
15	Targeting EZH2 for the treatment of hepatosplenic T-cell lymphoma. Blood Advances, 2020, 4, 1265-1269.	2.5	5
16	3126 – SINGLE CELL SEQUENCING OF MLL-REARRANGED LEUKEMIA REVEALS MECHANISMS OF LEUKEMIA INITIATING CELL PLASTICITY. Experimental Hematology, 2020, 88, S77.	0.2	0
17	The Folate Cycle Enzyme MTHFR Is a Critical Regulator of Cell Response to MYC-Targeting Therapies. Blood, 2019, 134, 877-877.	0.6	1
18	Exploiting an Asp-Glu "switch―in glycogen synthase kinase 3 to design paralog-selective inhibitors for use in acute myeloid leukemia. Science Translational Medicine, 2018, 10, .	5.8	69

Υάνα Ρικμάν

#	Article	IF	CITATIONS
19	Phase I trial of the mTOR inhibitor everolimus in combination with multiâ€agent chemotherapy in relapsed childhood acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2018, 65, e27062.	0.8	48
20	Targeted therapy for fusion-driven high-risk acute leukemia. Blood, 2018, 132, 1241-1247.	0.6	22
21	Resistance Mechanisms to SYK Inhibition in AML. Blood, 2018, 132, 2638-2638.	0.6	1
22	Matched Targeted Therapy for Pediatric Patients with Relapsed, Refractory or High-Risk Leukemias: A Report from the LEAP Consortium. Blood, 2018, 132, 261-261.	0.6	3
23	The creatine kinase pathway is a metabolic vulnerability in EVI1-positive acute myeloid leukemia. Nature Medicine, 2017, 23, 301-313.	15.2	79
24	Synergistic Drug Combinations with a CDK4/6 Inhibitor in T-cell Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2017, 23, 1012-1024.	3.2	88
25	Vcp-Regulated Homologous Recombination Represents a New Druggable Vulnerability in Acute Myeloid Leukemia. Blood, 2017, 130, 880-880.	0.6	0
26	A Prospective Cohort Quality Improvement Study to Reduce the Time to Antibiotics for New Fever in Neutropenic Pediatric Oncology Inpatients. Pediatric Blood and Cancer, 2016, 63, 112-117.	0.8	10
27	Targeting MTHFD2 in acute myeloid leukemia. Journal of Experimental Medicine, 2016, 213, 1285-1306.	4.2	118
28	Targeting MTHFD2 in acute myeloid leukemia. Journal of Cell Biology, 2016, 214, 21410IA135.	2.3	0
29	Targeting the Creatine Kinase Pathway in EVI1-Positive Acute Myeloid Leukemia. Blood, 2016, 128, 523-523.	0.6	0
30	Synergistic Drug Combinations with a CDK4/6 Inhibitor in T-Cell Acute Lymphoblastic Leukemia. Blood, 2015, 126, 2488-2488.	0.6	1
31	Phase Ib Trial of the mTOR Inhibitor Everolimus Given in Combination with Multiagent Chemotherapy in Relapsed Acute Lymphoblastic Leukemia. Blood, 2015, 126, 3765-3765.	0.6	3
32	Targeting MTHFD2 in Acute Myeloid Leukemia. Blood, 2015, 126, 443-443.	0.6	2
33	Identification of CKMT1B As a New Target in EVI1-Positive AML. Blood, 2015, 126, 3674-3674.	0.6	0
34	SYK Is a Critical Regulator of FLT3 in Acute Myeloid Leukemia. Cancer Cell, 2014, 25, 226-242.	7.7	126
35	Pulmonary Hypertension Associated With Scurvy and Vitamin Deficiencies in an Autistic Child. Pediatrics, 2013, 132, e1699-e1703.	1.0	49
36	Targeting Folate Metabolism In Acute Myelogenous Leukemia. Blood, 2013, 122, 3798-3798.	0.6	1

Υάνα Ρικμάν

#	Article	IF	CITATIONS
37	The OTT-MAL fusion oncogene activates RBPJ-mediated transcription and induces acute megakaryoblastic leukemia in a knockin mouse model. Journal of Clinical Investigation, 2009, 119, 852-64.	3.9	80
38	Genetic profiling of myeloproliferative disorders by single-nucleotide polymorphism oligonucleotide microarray. Experimental Hematology, 2008, 36, 1471-1479.	0.2	44
39	The CDK-Activating Kinase (CAK) Csk1 Is Required for Normal Levels of Homologous Recombination and Resistance to DNA Damage in Fission Yeast. PLoS ONE, 2008, 3, e1492.	1.1	9
40	OTT-MAL Activates the Notch Signaling Transcription Factor RBPJ and Cooperates with Mutant MPL to Induce Acute Megakaryoblastic Leukemia. Blood, 2008, 112, 508-508.	0.6	0
41	Advances in the molecular characterization of Philadelphia-negative chronic myeloproliferative disorders. Current Opinion in Oncology, 2007, 19, 628-634.	1.1	8
42	Peters Anomaly in Association with Multiple Midline Anomalies and a Familial Chromosome 4 Inversion. Ophthalmic Genetics, 2006, 27, 63-65.	0.5	14
43	MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood, 2006, 108, 3472-3476.	0.6	963
44	MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia. PLoS Medicine, 2006, 3, e270.	3.9	1,222
45	Genetic Profiling of Myeloproliferative Disorders by Single Nucleotide Polymorphism Oligonucleotide Microarray Blood, 2006, 108, 2688-2688.	0.6	0
46	Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18962-18967.	3.3	288