Wataru Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4949978/publications.pdf Version: 2024-02-01

		147566	118652
139	4,668	31	62
papers	citations	h-index	g-index
141	141	141	4778
all docs	docs citations	times ranked	citing authors

ΜΑΤΛΡΗ SATO

#	Article	IF	CITATIONS
1	Enhanced neural activity in response to dynamic facial expressions of emotion: an fMRI study. Cognitive Brain Research, 2004, 20, 81-91.	3.3	331
2	Cross-cultural Reading the Mind in the Eyes: An fMRI Investigation. Journal of Cognitive Neuroscience, 2010, 22, 97-108.	1.1	317
3	Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure. Cognitive Brain Research, 2001, 11, 281-287.	3.3	305
4	Emotional expression boosts early visual processing of the face: ERP recording and its decomposition by independent component analysis. NeuroReport, 2001, 12, 709-714.	0.6	188
5	Spontaneous facial mimicry in response to dynamic facial expressions. Cognition, 2007, 104, 1-18.	1.1	187
6	Enhanced facial EMG activity in response to dynamic facial expressions. International Journal of Psychophysiology, 2008, 70, 70-74.	0.5	182
7	The amygdala processes the emotional significance of facial expressions: an fMRI investigation using the interaction between expression and face direction. NeuroImage, 2004, 22, 1006-1013.	2.1	157
8	BRIEF REPORT The dynamic aspects of emotional facial expressions. Cognition and Emotion, 2004, 18, 701-710.	1.2	137
9	Impaired social brain network for processing dynamic facial expressions in autism spectrum disorders. BMC Neuroscience, 2012, 13, 99.	0.8	118
10	Enhanced Experience of Emotional Arousal in Response to Dynamic Facial Expressions. Journal of Nonverbal Behavior, 2007, 31, 119-135.	0.6	97
11	Attentional shift by gaze is triggered without awareness. Experimental Brain Research, 2007, 183, 87-94.	0.7	96
12	Rapid amygdala gamma oscillations in response to fearful facial expressions. Neuropsychologia, 2011, 49, 612-617.	0.7	87
13	The structural neural substrate of subjective happiness. Scientific Reports, 2015, 5, 16891.	1.6	85
14	Relationships among Facial Mimicry, Emotional Experience, and Emotion Recognition. PLoS ONE, 2013, 8, e57889.	1.1	84
15	Seeing Happy Emotion in Fearful and Angry Faces: Qualitative Analysis of Facial Expression Recognition in a Bilateral Amygdala-Damaged Patient. Cortex, 2002, 38, 727-742.	1.1	70
16	Commonalities in the neural mechanisms underlying automatic attentional shifts by gaze, gestures, and symbols. NeuroImage, 2009, 45, 984-992.	2.1	69
17	The atypical social brain network in autism: advances in structural and functional MRI studies. Current Opinion in Neurology, 2019, 32, 617-621.	1.8	67
18	Right hemispheric dominance in processing of unconscious negative emotion. Brain and Cognition, 2006, 62, 261-266.	0.8	62

#	Article	IF	CITATIONS
19	Dynamic facial expressions of emotion induce representational momentum. Cognitive, Affective and Behavioral Neuroscience, 2008, 8, 25-31.	1.0	61
20	Facial Expressions of Basic Emotions in Japanese Laypeople. Frontiers in Psychology, 2019, 10, 259.	1.1	60
21	Amygdala integrates emotional expression and gaze direction in response to dynamic facial expressions. Neurolmage, 2010, 50, 1658-1665.	2.1	59
22	Impaired Overt Facial Mimicry in Response to Dynamic Facial Expressions in High-Functioning Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 2015, 45, 1318-1328.	1.7	56
23	Reduced Gray Matter Volume in the Social Brain Network in Adults with Autism Spectrum Disorder. Frontiers in Human Neuroscience, 2017, 11, 395.	1.0	53
24	Dynamic fearful gaze does not enhance attention orienting in individuals with Asperger's disorder. Brain and Cognition, 2009, 71, 229-233.	0.8	48
25	EMOTION ELICITATION EFFECT OF FILMS IN A JAPANESE SAMPLE. Social Behavior and Personality, 2007, 35, 863-874.	0.3	47
26	Misrecognition of facial expressions in delinquents. Child and Adolescent Psychiatry and Mental Health, 2009, 3, 27.	1.2	46
27	Time course of superior temporal sulcus activity in response to eye gaze: a combined fMRI and MEG study. Social Cognitive and Affective Neuroscience, 2008, 3, 224-232.	1.5	38
28	A sensorimotor control framework for understanding emotional communication and regulation. Neuroscience and Biobehavioral Reviews, 2020, 112, 503-518.	2.9	38
29	Facial expression arousal level modulates facial mimicry. International Journal of Psychophysiology, 2010, 76, 88-92.	0.5	37
30	Detection of emotional facial expressions and anti-expressions. Visual Cognition, 2010, 18, 369-388.	0.9	36
31	Rapid, high-frequency, and theta-coupled gamma oscillations in the inferior occipital gyrus during face processing. Cortex, 2014, 60, 52-68.	1.1	36
32	Physiological correlates of subjective emotional valence and arousal dynamics while viewing films. Biological Psychology, 2020, 157, 107974.	1.1	35
33	Involvement of medial temporal structures in reflexive attentional shift by gaze. Social Cognitive and Affective Neuroscience, 2008, 3, 80-88.	1.5	34
34	Increased Putamen Volume in Adults with Autism Spectrum Disorder. Frontiers in Human Neuroscience, 2014, 8, 957.	1.0	33
35	Sex Differences in the Rapid Detection of Emotional Facial Expressions. PLoS ONE, 2014, 9, e94747.	1.1	33
36	Structural Neural Substrates of Reading the Mind in the Eyes. Frontiers in Human Neuroscience, 2016, 10, 151.	1.0	32

#	Article	IF	CITATIONS
37	Neural mechanisms underlying conscious and unconscious attentional shifts triggered by eye gaze. NeuroImage, 2016, 124, 118-126.	2.1	32
38	The specific impairment of fearful expression recognition and its atypical development in pervasive developmental disorder. Social Neuroscience, 2011, 6, 452-463.	0.7	31
39	Temporal Profile of Amygdala Gamma Oscillations in Response to Faces. Journal of Cognitive Neuroscience, 2012, 24, 1420-1433.	1.1	31
40	EYE GAZE TRIGGERS VISUOSPATIAL ATTENTIONAL SHIFT IN INDIVIDUALS WITH AUTISM. Psychologia, 2003, 46, 246-254.	0.3	30
41	The association between perceived social support and amygdala structure. Neuropsychologia, 2016, 85, 237-244.	0.7	30
42	Bidirectional electric communication between the inferior occipital gyrus and the amygdala during face processing. Human Brain Mapping, 2017, 38, 4511-4524.	1.9	30
43	Spatiotemporal neural network dynamics for the processing of dynamic facial expressions. Scientific Reports, 2015, 5, 12432.	1.6	29
44	Emotion recognition from facial expressions in a temporal lobe epileptic patient with ictal fear. Neuropsychologia, 2005, 43, 434-441.	0.7	28
45	Neural substrates of the ability to recognize facial expressions: a voxel-based morphometry study. Social Cognitive and Affective Neuroscience, 2017, 12, nsw142.	1.5	28
46	Time course of gammaâ€band oscillation associated with face processing in the inferior occipital gyrus and fusiform gyrus: A combined fMRI and MEG study. Human Brain Mapping, 2017, 38, 2067-2079.	1.9	28
47	Impaired detection of happy facial expressions in autism. Scientific Reports, 2017, 7, 13340.	1.6	28
48	Enhanced perceptual, emotional, and motor processing in response to dynamic facial expressions of emotion1. Japanese Psychological Research, 2006, 48, 213-222.	0.4	26
49	Direction of Amygdala–Neocortex Interaction During Dynamic Facial Expression Processing. Cerebral Cortex, 2017, 27, bhw036.	1.6	26
50	Emotional Cognition without Awareness after Unilateral Temporal Lobectomy in Humans. Journal of Neuroscience, 2000, 20, RC97-RC97.	1.7	25
51	Widespread and lateralized social brain activity for processing dynamic facial expressions. Human Brain Mapping, 2019, 40, 3753-3768.	1.9	25
52	Facial feedback affects valence judgments of dynamic and static emotional expressions. Frontiers in Psychology, 2015, 6, 291.	1.1	24
53	Resting-state neural activity and connectivity associated with subjective happiness. Scientific Reports, 2019, 9, 12098.	1.6	24
54	The influence of test-set similarity in verbal overshadowing. Applied Cognitive Psychology, 2002, 16, 963-972.	0.9	22

#	Article	IF	CITATIONS
55	Rapid Amygdala Gamma Oscillations in Response to Eye Gaze. PLoS ONE, 2011, 6, e28188.	1.1	22
56	Facial EMG Correlates of Subjective Hedonic Responses During Food Consumption. Nutrients, 2020, 12, 1174.	1.7	22
57	Brief Report: Representational Momentum for Dynamic Facial Expressions in Pervasive Developmental Disorder. Journal of Autism and Developmental Disorders, 2010, 40, 371-377.	1.7	21
58	Assessing Automated Facial Action Unit Detection Systems for Analyzing Cross-Domain Facial Expression Databases. Sensors, 2021, 21, 4222.	2.1	21
59	Unconscious Affective Responses to Food. PLoS ONE, 2016, 11, e0160956.	1.1	20
60	Recognition Memory for Faces and Scenes. Journal of General Psychology, 2013, 140, 1-15.	1.6	19
61	Fat Content Modulates Rapid Detection of Food: A Visual Search Study Using Fast Food and Japanese Diet. Frontiers in Psychology, 2017, 8, 1033.	1.1	19
62	Enhanced subliminal emotional responses to dynamic facial expressions. Frontiers in Psychology, 2014, 5, 994.	1.1	18
63	Reduced representational momentum for subtle dynamic facial expressions in individuals with autism spectrum disorders. Research in Autism Spectrum Disorders, 2014, 8, 1090-1099.	0.8	18
64	Emotional attention capture by facial expressions. Scientific Reports, 2015, 5, 14042.	1.6	18
65	Emotional valence sensing using a wearable facial EMG device. Scientific Reports, 2021, 11, 5757.	1.6	18
66	Amygdala activity in response to forward versus backward dynamic facial expressions. Brain Research, 2010, 1315, 92-99.	1.1	17
67	The inversion effect for neutral and emotional facial expressions on amygdala activity. Brain Research, 2011, 1378, 84-90.	1.1	17
68	Atypical recognition of dynamic changes in facial expressions in autism spectrum disorders. Research in Autism Spectrum Disorders, 2013, 7, 906-912.	0.8	17
69	Putamen volume correlates with obsessive compulsive characteristics in healthy population. Psychiatry Research - Neuroimaging, 2016, 249, 97-104.	0.9	17
70	Impairment of unconscious, but not conscious, gaze-triggered attention orienting in Asperger's disorder. Research in Autism Spectrum Disorders, 2010, 4, 782-786.	0.8	16
71	Electrophysiological correlates of the efficient detection of emotional facial expressions. Brain Research, 2014, 1560, 60-72.	1.1	16
72	Amygdala activation during unconscious visual processing of food. Scientific Reports, 2019, 9, 7277.	1.6	16

#	Article	IF	CITATIONS
73	Right hemispheric dominance in gaze-triggered reflexive shift of attention in humans. Brain and Cognition, 2006, 62, 128-133.	0.8	15
74	Anti-expressions: Artificial control stimuli for the visual properties of emotional facial expressions. Social Behavior and Personality, 2009, 37, 491-501.	0.3	15
75	Rapid and multiple-stage activation of the human amygdala for processing facial signals. Communicative and Integrative Biology, 2013, 6, e24562.	0.6	15
76	Gray matter volumes of early sensory regions are associated with individual differences in sensory processing. Human Brain Mapping, 2017, 38, 6206-6217.	1.9	15
77	Putamen Volume is Negatively Correlated with the Ability to Recognize Fearful Facial Expressions. Brain Topography, 2017, 30, 774-784.	0.8	15
78	Neural Mechanisms Underlying Conscious and Unconscious Gaze-Triggered Attentional Orienting in Autism Spectrum Disorder. Frontiers in Human Neuroscience, 2017, 11, 339.	1.0	15
79	Structural Correlates of Reading the Mind in the Eyes in Autism Spectrum Disorder. Frontiers in Human Neuroscience, 2017, 11, 361.	1.0	15
80	Dynamic Fearful Expressions Enhance Gaze-Triggered Attention Orienting in High and Low Anxiety Individuals. Social Behavior and Personality, 2009, 37, 1313-1326.	0.3	14
81	Facial EMG Activity Is Associated with Hedonic Experiences but Not Nutritional Values While Viewing Food Images. Nutrients, 2021, 13, 11.	1.7	14
82	Amygdala activity related to perceived social support. Scientific Reports, 2020, 10, 2951.	1.6	13
83	Tears evoke the intention to offer social support: A systematic investigation of the interpersonal effects of emotional crying across 41 countries. Journal of Experimental Social Psychology, 2021, 95, 104137.	1.3	13
84	AUTOMATIC ATTENTIONAL SHIFTS BY GAZE, GESTURES, AND SYMBOLS. Psychologia, 2010, 53, 27-35.	0.3	13
85	Facial affect recognition in pre-lingually deaf people with schizophrenia. Schizophrenia Research, 2003, 61, 265-270.	1.1	12
86	Enhanced emotional and motor responses to live versus videotaped dynamic facial expressions. Scientific Reports, 2020, 10, 16825.	1.6	12
87	Neuroticism Delays Detection of Facial Expressions. PLoS ONE, 2016, 11, e0153400.	1.1	12
88	Atypical Amygdala–Neocortex Interaction During Dynamic Facial Expression Processing in Autism Spectrum Disorder. Frontiers in Human Neuroscience, 2019, 13, 351.	1.0	11
89	Editorial: Dynamic Emotional Communication. Frontiers in Psychology, 2019, 10, 2836.	1.1	11
90	Common impairments of emotional facial expression recognition in schizophrenia across French and Japanese cultures. Frontiers in Psychology, 2015, 6, 1018.	1.1	10

#	Article	IF	CITATIONS
91	Common and unique impairments in facial-expression recognition in pervasive developmental disorder-not otherwise specified and Asperger's disorder. Research in Autism Spectrum Disorders, 2013, 7, 361-368.	0.8	9
92	Rapid gamma oscillations in the inferior occipital gyrus in response to eyes. Scientific Reports, 2016, 6, 36321.	1.6	9
93	Homeostatic modulation on unconscious hedonic responses to food. BMC Research Notes, 2017, 10, 511.	0.6	9
94	Corticostriatal-limbic correlates of sub-clinical obsessive-compulsive traits. Psychiatry Research - Neuroimaging, 2019, 285, 40-46.	0.9	9
95	Cultural Moderation of Unconscious Hedonic Responses to Food. Nutrients, 2019, 11, 2832.	1.7	9
96	An Android for Emotional Interaction: Spatiotemporal Validation of Its Facial Expressions. Frontiers in Psychology, 2021, 12, 800657.	1.1	9
97	Right hemispheric dominance and interhemispheric cooperation in gazeâ€ŧriggered reflexive shift of attention. Psychiatry and Clinical Neurosciences, 2012, 66, 97-104.	1.0	8
98	Commonalities and differences in the spatiotemporal neural dynamics associated with automatic attentional shifts induced by gaze and arrows. Neuroscience Research, 2014, 87, 56-65.	1.0	7
99	Hunger promotes the detection of high-fat food. Appetite, 2019, 142, 104377.	1.8	7
100	Naturalistic Emotion Decoding From Facial Action Sets. Frontiers in Psychology, 2018, 9, 2678.	1.1	7
101	Neurocognitive Mechanisms Underlying Social Atypicalities in Autism: Weak Amygdala's Emotional Modulation Hypothesis. Frontiers in Psychiatry, 2020, 11, 864.	1.3	7
102	Rapid detection of neutral faces associated with emotional value. Cognition and Emotion, 2022, 36, 546-559.	1.2	7
103	Exaggerated perception of facial expressions is increased in individuals with schizotypal traits. Scientific Reports, 2015, 5, 11795.	1.6	6
104	Older adults detect happy facial expressions less rapidly. Royal Society Open Science, 2020, 7, 191715.	1.1	6
105	Viewpoint Robustness of Automated Facial Action Unit Detection Systems. Applied Sciences (Switzerland), 2021, 11, 11171.	1.3	6
106	Scientists' personality, values, and well-being. SpringerPlus, 2016, 5, 613.	1.2	5
107	Spatiotemporal commonalities of fronto-parietal activation in attentional orienting triggered by supraliminal and subliminal gaze cues: An event-related potential study. Biological Psychology, 2018, 136, 29-38.	1.1	5
108	Positive Emotion Amplification by Representing Excitement Scene with TV Chat Agents. Sensors, 2020, 20, 7330.	2.1	5

#	Article	IF	CITATIONS
109	Cultural differences in food detection. Scientific Reports, 2020, 10, 17285.	1.6	4
110	Impairment of emotional expression detection after unilateral medial temporal structure resection. Scientific Reports, 2021, 11, 20617.	1.6	4
111	Inhibition of emotion-related autonomic arousal by skin pressure. SpringerPlus, 2015, 4, 294.	1.2	3
112	FACILITATION OF GAZE-TRIGGERED ATTENTION ORIENTING BY A FEARFUL EXPRESSION AND ITS RELATIONSHIP TO ANXIETY. Psychologia, 2009, 52, 188-197.	0.3	3
113	Association Between Dieting Failure and Unconscious Hedonic Responses to Food. Frontiers in Psychology, 2020, 11, 2089.	1.1	3
114	Brow and Masticatory Muscle Activity Senses Subjective Hedonic Experiences during Food Consumption. Nutrients, 2021, 13, 4216.	1.7	3
115	Robot touch with speech boosts positive emotions. Scientific Reports, 2022, 12, 6884.	1.6	3
116	Spontaneous facial mimicry in response to dynamic facial expressions. , 0, , .		2
117	Editorial: Positive Neuroscience: the Neuroscience of Human Flourishing. Frontiers in Human Neuroscience, 2020, 14, 47.	1.0	2
118	SUBCATEGORIES OF POSITIVE EMOTION. Psychologia, 2012, 55, 1-8.	0.3	2
119	Image database of Japanese food samples with nutrition information. PeerJ, 2020, 8, e9206.	0.9	2
120	Schizotypy is associated with difficulties detecting emotional facial expressions. Royal Society Open Science, 2021, 8, 211322.	1.1	2
121	The structural neural correlates of atypical facial expression recognition in autism spectrum disorder. Brain Imaging and Behavior, 2022, , 1.	1.1	2
122	Computational Process of Sharing Emotion: An Authentic Information Perspective. Frontiers in Psychology, 2022, 13, .	1.1	2
123	Spatio-Temporal Properties of Amused, Embarrassed, and Pained Smiles. Journal of Nonverbal Behavior, 2022, 46, 467-483.	0.6	2
124	Emotional elicitation by dynamic facial expressions. , 0, , .		1
125	Analyzing Neural Activity and Connectivity Using Intracranial EEG Data with SPM Software. Journal of Visualized Experiments, 2018, , .	0.2	1
126	Vocal Synchrony of Robots Boosts Positive Affective Empathy. Applied Sciences (Switzerland), 2021, 11, 2502.	1.3	1

#	Article	IF	CITATIONS
127	CHARACTERISTICS OF THE INVOLVEMENT OF THE AMYGDALA IN THE RECOGNITION OF EMOTIONAL EXPRESSIONS: A REVIEW OF NEUROPSYCHOLOGICAL RESEARCH. Psychologia, 2004, 47, 125-142.	0.3	1
128	Gamma Oscillations in the Temporal Pole in Response to Eyes. PLoS ONE, 2016, 11, e0162039.	1.1	1
129	Evaluation of Pacing for Dialog Robots to Build Trust Relationships with Human Users. , 2019, , .		1
130	Subjective and Physiological Evaluation of Gentle Stroke Motion Using a Human-Imitation Hand. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2020, 2020, 1P1-N06.	0.0	1
131	Color's Indispensable Role in the Rapid Detection of Food. Frontiers in Psychology, 2021, 12, 753654.	1.1	1
132	The association between perceived social support and amygdala structure. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2015, 79, 3EV-023-3EV-023.	0.0	0
133	Cross-Cultural Differences and Psychometric Properties of the Japanese Actions and Feelings Questionnaire (J-AFQ). Frontiers in Psychology, 2021, 12, 722108.	1.1	0
134	Bilateral putamen volume negatively correlates with recognition performance for fearful facial expressions. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2015, 79, 2AM-075-2AM-075.	0.0	0
135	Effects of neuroticism on rapid detection of facial expressions. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2015, 79, 3EV-071-3EV-071.	0.0	0
136	Homeostatic modulation on unconscious hedonic responses to food. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2017, 81, 2D-060-2D-060.	0.0	0
137	Characteristics of social cognitive processing in schizotypy. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2018, 82, 1PM-063-1PM-063.	0.0	0
138	Evaluation of Relationship between Stroke Pace and Speech Rate for Touch-Care Robot. , 2019, , .		0
139	Rapid detection of neutral faces associated with emotional value among older adults. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2022, , .	2.4	0