
Changpeng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4949931/publications.pdf Version: 2024-02-01

CHANCDENC LUI

#	Article	IF	CITATIONS
1	Revealing the true origin of size-dependent Pd/C catalytic behavior towards formic acid decomposition. Chinese Chemical Letters, 2023, 34, 107221.	9.0	3
2	Formic acid electro-oxidation: Mechanism and electrocatalysts design. Nano Research, 2023, 16, 3607-3621.	10.4	12
3	Polymer-chelation approach to high-performance Fe-Nx-C catalyst towards oxygen reduction reaction. Chinese Chemical Letters, 2023, 34, 107455.	9.0	3
4	An ultralow-loading platinum alloy efficient ORR electrocatalyst based on the surface-contracted hollow structure. Chemical Engineering Journal, 2022, 428, 131569.	12.7	22
5	Preparation Strategy Using Pre-Nucleation Coupled with In Situ Reduction for a High-Performance Catalyst towards Selective Hydrogen Production from Formic Acid. Catalysts, 2022, 12, 325.	3.5	3
6	RuCo Alloy Nanoparticles Embedded into N-Doped Carbon for High Efficiency Hydrogen Evolution Electrocatalyst. Energies, 2022, 15, 2908.	3.1	3
7	Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis. Journal of Materials Chemistry A, 2022, 10, 13170-13189.	10.3	47
8	Oxygen-vacancy-rich TiO2 enables highly active and durable water electrolysis of urchin-like RuO2 catalyst. Science China Technological Sciences, 2022, 65, 2317-2324.	4.0	6
9	Fe, Cu-codoped metal-nitrogen-carbon catalysts with high selectivity and stability for the oxygen reduction reaction. Chinese Chemical Letters, 2021, 32, 506-510.	9.0	23
10	Carbon monoxide powered fuel cell towards H2-onboard purification. Science Bulletin, 2021, 66, 1305-1311.	9.0	21
11	Recent advances in active sites identification and new Mâ^'Nâ^'C catalysts development towards ORR. JPhys Materials, 2021, 4, 044008.	4.2	7
12	Modulating Crystallinity and Surface Electronic Structure of IrO ₂ via Gadolinium Doping to Promote Acidic Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 10710-10716.	6.7	20
13	Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis. Joule, 2021, 5, 2164-2176.	24.0	183
14	Nanocluster PtNiP supported on graphene as an efficient electrocatalyst for methanol oxidation reaction. Nano Research, 2021, 14, 2853-2860.	10.4	39
15	Highly dispersed L10-PtZn intermetallic catalyst for efficient oxygen reduction. Science China Materials, 2021, 64, 1671-1678.	6.3	18
16	Pyrolyzed M–N _x catalysts for oxygen reduction reaction: progress and prospects. Energy and Environmental Science, 2021, 14, 2158-2185.	30.8	170
17	Proton exchange membrane fuel cells powered with both CO and H ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
18	COâ€Tolerant PEMFC Anodes Enabled by Synergistic Catalysis between Iridium Singleâ€Atom Sites and Nanoparticles. Angewandte Chemie - International Edition, 2021, 60, 26177-26183.	13.8	81

#	Article	lF	CITATIONS
19	COâ€Tolerant PEMFC Anodes Enabled by Synergistic Catalysis between Iridium Singleâ€Atom Sites and Nanoparticles. Angewandte Chemie, 2021, 133, 26381.	2.0	9
20	Sea urchin-like Aucore@Pdshell electrocatalysts with high FAOR performance: Coefficient of lattice strain and electrochemical surface area. Applied Catalysis B: Environmental, 2020, 260, 118200.	20.2	46
21	Evidence for interfacial geometric interactions at metal–support interfaces and their influence on the electroactivity and stability of Pt nanoparticles. Journal of Materials Chemistry A, 2020, 8, 1368-1377.	10.3	25
22	Construction and Regulation of a Surface Protophilic Environment to Enhance Oxygen Reduction Reaction Electrocatalytic Activity. ACS Applied Materials & Interfaces, 2020, 12, 41269-41276.	8.0	13
23	Stabilized Pt Cluster-Based Catalysts Used as Low-Loading Cathode in Proton-Exchange Membrane Fuel Cells. ACS Energy Letters, 2020, 5, 3021-3028.	17.4	39
24	Preferentially Engineering FeN ₄ Edge Sites onto Graphitic Nanosheets for Highly Active and Durable Oxygen Electrocatalysis in Rechargeable Zn–Air Batteries. Advanced Materials, 2020, 32, e2004900.	21.0	235
25	Bridge Bonded Oxygen Ligands between Approximated FeN ₄ Sites Confer Catalysts with High ORR Performance. Angewandte Chemie, 2020, 132, 14027-14032.	2.0	40
26	Bridge Bonded Oxygen Ligands between Approximated FeN ₄ Sites Confer Catalysts with High ORR Performance. Angewandte Chemie - International Edition, 2020, 59, 13923-13928.	13.8	176
27	Activating the Pd-Based catalysts via tailoring reaction interface towards formic acid dehydrogenation. International Journal of Hydrogen Energy, 2020, 45, 17575-17582.	7.1	20
28	Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts. Nanoscale, 2020, 12, 13249-13275.	5.6	183
29	Accelerated oxygen reduction on Fe/N/C catalysts derived from precisely-designed ZIF precursors. Nano Research, 2020, 13, 2420-2426.	10.4	41
30	Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nature Communications, 2020, 11, 1116.	12.8	108
31	Singleâ€Atom Crâ^'N ₄ Sites Designed for Durable Oxygen Reduction Catalysis in Acid Media. Angewandte Chemie, 2019, 131, 12599-12605.	2.0	29
32	Singleâ€Atom Crâ^'N ₄ Sites Designed for Durable Oxygen Reduction Catalysis in Acid Media. Angewandte Chemie - International Edition, 2019, 58, 12469-12475.	13.8	307
33	Simultaneously Engineering Electron Conductivity, Site Density and Intrinsic Activity of MoS ₂ via the Cation and Anion Codoping Strategy. ACS Applied Materials & Interfaces, 2019, 11, 39782-39788.	8.0	16
34	Climbing the Apex of the ORR Volcano Plot via Binuclear Site Construction: Electronic and Geometric Engineering. Journal of the American Chemical Society, 2019, 141, 17763-17770.	13.7	436
35	Atomic-level dispersed catalysts for PEMFCs: Progress and future prospects. EnergyChem, 2019, 1, 100018.	19.1	50
36	Metal organic framework derived nitrogen-doped carbon anchored palladium nanoparticles for ambient temperature formic acid decomposition. International Journal of Hydrogen Energy, 2019, 44, 28402-28408.	7.1	38

#	Article	IF	CITATIONS
37	Mass transport in anode gas diffusion layer of direct methanol fuel cell derived from compression effect. Journal of Power Sources, 2019, 427, 120-128.	7.8	20
38	Reductive-heat-treated platinum tungsten oxide catalyst with improved CO oxidation activity and CO gas sensing property. Analytical Methods, 2019, 11, 1811-1815.	2.7	1
39	Highly active PtAu alloy surface towards selective formic acid electrooxidation. Journal of Energy Chemistry, 2019, 37, 157-162.	12.9	11
40	Recent advances in active sites identification and regulation of M-N/C electro-catalysts towards ORR. Science China Chemistry, 2019, 62, 669-683.	8.2	38
41	Engineering Energy Level of Metal Center: Ru Single-Atom Site for Efficient and Durable Oxygen Reduction Catalysis. Journal of the American Chemical Society, 2019, 141, 19800-19806.	13.7	288
42	Low-temperature synthesis of nitrogen doped carbon nanotubes as promising catalyst support for methanol oxidation. Journal of Energy Chemistry, 2019, 28, 118-122.	12.9	28
43	Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and Its in Situ Reduced Fe-N ₄ Active Site Identification Revealed by X-ray Absorption Spectroscopy. ACS Catalysis, 2018, 8, 2824-2832.	11.2	433
44	Recent development of methanol electrooxidation catalysts for direct methanol fuel cell. Journal of Energy Chemistry, 2018, 27, 1618-1628.	12.9	215
45	Enhanced electrocatalytic performance for the hydrogen evolution reaction through surface enrichment of platinum nanoclusters alloying with ruthenium <i>in situ</i> embedded in carbon. Energy and Environmental Science, 2018, 11, 1232-1239.	30.8	230
46	Highly polarized carbon nano-architecture as robust metal-free catalyst for oxygen reduction in polymer electrolyte membrane fuel cells. Nano Energy, 2018, 49, 23-30.	16.0	90
47	Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site. Nano Energy, 2018, 46, 396-403.	16.0	319
48	Pd–PdO Interface as Active Site for HCOOH Selective Dehydrogenation at Ambient Condition. Journal of Physical Chemistry C, 2018, 122, 2081-2088.	3.1	75
49	Selfâ€Healing Protonâ€Exchange Membranes Composed of Nafion–Poly(vinyl alcohol) Complexes for Durable Direct Methanol Fuel Cells. Advanced Materials, 2018, 30, e1707146.	21.0	116
50	Enhancing mass transport in direct methanol fuel cell by optimizing the microstructure of anode microporous layer. AICHE Journal, 2018, 64, 3519-3528.	3.6	8
51	Recent progress in hydrogen production from formic acid decomposition. International Journal of Hydrogen Energy, 2018, 43, 7055-7071.	7.1	155
52	Boosted Performance of Ir Species by Employing TiN as the Support toward Oxygen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2018, 10, 38117-38124.	8.0	100
53	Cobalt phosphosulfide in the tetragonal phase: a highly active and durable catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 12353-12360.	10.3	43
54	Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nature Communications, 2018, 9, 2120.	12.8	461

#	Article	IF	CITATIONS
55	Correlating Fe source with Fe-N-C active site construction: Guidance for rational design of high-performance ORR catalyst. Journal of Energy Chemistry, 2018, 27, 1668-1673.	12.9	104
56	TePbPt alloy nanotube as electrocatalyst with enhanced performance towards methanol oxidation reaction. Journal of Materials Chemistry A, 2018, 6, 16798-16803.	10.3	25
57	Sulfur-Doped Nickel Phosphide Nanoplates Arrays: A Monolithic Electrocatalyst for Efficient Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 26303-26311.	8.0	97
58	Structural Advantage Induced by Sulfur to Boost the Catalytic Performance of FeNC Catalyst towards the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 3653-3658.	3.7	13
59	Core-shell structured Ni12P5/Ni3(PO4)2 hollow spheres as difunctional and efficient electrocatalysts for overall water electrolysis. Applied Catalysis B: Environmental, 2017, 204, 486-496.	20.2	148
60	Micro-Membrane Electrode Assembly Design to Precisely Measure the in Situ Activity of Oxygen Reduction Reaction Electrocatalysts for PEMFC. Analytical Chemistry, 2017, 89, 6309-6313.	6.5	9
61	Nanoporous IrO ₂ catalyst with enhanced activity and durability for water oxidation owing to its micro/mesoporous structure. Nanoscale, 2017, 9, 9291-9298.	5.6	66
62	Advanced architecture carbon with in-situ embedded ultrafine titanium dioxide as outstanding support material for platinum catalysts towards methanol electrooxidation. Electrochimica Acta, 2017, 235, 508-518.	5.2	11
63	Micro Galvanic Cell To Generate PtO and Extend the Triple-Phase Boundary during Self-Assembly of Pt/C and Nafion for Catalyst Layers of PEMFC. ACS Applied Materials & Interfaces, 2017, 9, 38165-38169.	8.0	11
64	Platinum nanoparticles partially-embedded into carbon sphere surfaces: a low metal-loading anode catalyst with superior performance for direct methanol fuel cells. Journal of Materials Chemistry A, 2017, 5, 19857-19865.	10.3	45
65	Selectively doping pyridinic and pyrrolic nitrogen into a 3D porous carbon matrix through template-induced edge engineering: enhanced catalytic activity towards the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 21709-21714.	10.3	76
66	Discontinuously covered IrO ₂ –RuO ₂ @Ru electrocatalysts for the oxygen evolution reaction: how high activity and long-term durability can be simultaneously realized in the synergistic and hybrid nano-structure. Journal of Materials Chemistry A, 2017, 5, 17221-17229.	10.3	133
67	Recent progress in active sites for non-noble metal carbon-based oxygen reduction catalysts. Scientia Sinica Chimica, 2017, 47, 554-564.	0.4	2
68	Nitrogen, Iron-codoped Mesoporous Carbon with bimodal-pores as an Efficient Catalyst for the Oxygen Reduction Reaction. Electrochimica Acta, 2016, 209, 551-556.	5.2	11
69	Significantly enhanced oxygen reduction reaction performance of N-doped carbon by heterogeneous sulfur incorporation: synergistic effect between the two dopants in metal-free catalysts. Journal of Materials Chemistry A, 2016, 4, 7422-7429.	10.3	71
70	Metal–Organic Framework-Induced Synthesis of Ultrasmall Encased NiFe Nanoparticles Coupling with Graphene as an Efficient Oxygen Electrode for a Rechargeable Zn–Air Battery. ACS Catalysis, 2016, 6, 6335-6342.	11.2	210
71	Nanostructured palladium catalyst poisoning depressed by cobalt phosphide in the electro-oxidation of formic acid for fuel cells. Nano Energy, 2016, 30, 355-361.	16.0	107
72	Active Pt ₃ Ni (111) Surface of Pt ₃ Ni Icosahedron for Oxygen Reduction. ACS Applied Materials & Interfaces, 2016, 8, 30066-30071.	8.0	21

#	Article	IF	CITATIONS
73	Pt–CoP/C as an alternative PtRu/C catalyst for direct methanol fuel cells. Journal of Materials Chemistry A, 2016, 4, 18607-18613.	10.3	122
74	Monocrystalline Ni ₁₂ P ₅ hollow spheres with ultrahigh specific surface areas as advanced electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 9755-9759.	10.3	45
75	Ultrathin cobalt phosphide nanosheets as efficient bifunctional catalysts for a water electrolysis cell and the origin for cell performance degradation. Green Chemistry, 2016, 18, 2287-2295.	9.0	108
76	TiO2 inserted carbon materials with fine-tuned pore structure as effective model supports for electrocatalysts of fuel cells. Carbon, 2016, 98, 126-137.	10.3	12
77	Ni ₂ P Makes Application of the PtRu Catalyst Much Stronger in Direct Methanol Fuel Cells. ChemSusChem, 2015, 8, 3340-3347.	6.8	40
78	Titanium dioxide encapsulated in nitrogen-doped carbon enhances the activity and durability of platinum catalyst for Methanol electro-oxidation reaction. Journal of Power Sources, 2015, 292, 78-86.	7.8	24
79	Superior electrocatalytic activity from nanodendritic structure consisting of a PtFe bimetallic core and Pt shell. Chemical Communications, 2015, 51, 3215-3218.	4.1	21
80	The enhanced electrocatalytic activity and stability of supported Pt nanopartciles for methanol electro-oxidation through the optimized oxidation degree of carbon nanotubes. Journal of Power Sources, 2015, 281, 34-43.	7.8	35
81	NiCo2O4 3 dimensional nanosheet as effective and robust catalyst for oxygen evolution reaction. RSC Advances, 2015, 5, 61900-61905.	3.6	35
82	High-quality hydrogen generated from formic acid triggered by in situ prepared Pd/C catalyst for fuel cells. Catalysis Science and Technology, 2015, 5, 2581-2584.	4.1	31
83	Rapid synthesis of a PtRu nano-sponge with different surface compositions and performance evaluation for methanol electrooxidation. Nanoscale, 2015, 7, 9467-9471.	5.6	71
84	Nanostructured PtRu/C catalyst promoted by CoP as an efficient and robust anode catalyst in direct methanol fuel cells. Nano Energy, 2015, 15, 462-469.	16.0	93
85	Meso/Macroporous Nitrogenâ€Doped Carbon Architectures with Iron Carbide Encapsulated in Graphitic Layers as an Efficient and Robust Catalyst for the Oxygen Reduction Reaction in Both Acidic and Alkaline Solutions. Advanced Materials, 2015, 27, 2521-2527.	21.0	521
86	Strongly coupled Pt nanotubes/N-doped graphene as highly active and durable electrocatalysts for oxygen reduction reaction. Nano Energy, 2015, 13, 318-326.	16.0	62
87	Surface Oxidized Cobalt-Phosphide Nanorods As an Advanced Oxygen Evolution Catalyst in Alkaline Solution. ACS Catalysis, 2015, 5, 6874-6878.	11.2	441
88	Growth mechanism and active site probing of Fe ₃ C@N-doped carbon nanotubes/C catalysts: guidance for building highly efficient oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 21451-21459.	10.3	65
89	Promotion of Mesoporous Vanadium Carbide Incorporated on Resorcinol–Formaldehyde Resin Carbon Composites with Highâ€6urfaceâ€Areas on Platinum Catalysts for Methanol Electrooxidation. ChemCatChem, 2014, 6, 3387-3395.	3.7	6
90	Pd@Pt/C catalysts fabricated using chemisorbed CO as in situ reductant: advanced catalytic behaviour for formic acid oxidation. RSC Advances, 2014, 4, 57819-57822.	3.6	0

#	Article	IF	CITATIONS
91	Activity of Platinum/Carbon and Palladium/Carbon Catalysts Promoted by Ni ₂ P in Direct Ethanol Fuel Cells. ChemSusChem, 2014, 7, 3374-3381.	6.8	37
92	The construction of nitrogen-doped graphitized carbon–TiO2 composite to improve the electrocatalyst for methanol oxidation. Carbon, 2014, 72, 114-124.	10.3	58
93	Preparation of Pt hollow nanotubes with adjustable diameters for methanol electrooxidation. RSC Advances, 2014, 4, 21176.	3.6	14
94	An Effective Pd–Ni ₂ P/C Anode Catalyst for Direct Formic Acid Fuel Cells. Angewandte Chemie - International Edition, 2014, 53, 122-126.	13.8	306
95	Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells. Energy and Environmental Science, 2014, 7, 1628.	30.8	235
96	Nitrogen-doped carbon–graphene composites enhance the electrocatalytic performance of the supported Pt catalysts for methanol oxidation. Chemical Communications, 2014, 50, 12201-12203.	4.1	37
97	Reconstructed PtFe Alloy Nanoparticles with Bulk-Surface Differential Structure for Methanol Oxidation. Electrochimica Acta, 2014, 139, 61-68.	5.2	30
98	Modelâ€based design and optimization of the microscale mass transfer structure in the anode catalyst layer for direct methanol fuel cell. AICHE Journal, 2013, 59, 780-786.	3.6	9
99	Enhanced activity of Pt nano-crystals supported on a novel TiO2@N-doped C nano-composite for methanol oxidation reaction. Journal of Materials Chemistry, 2012, 22, 19718.	6.7	63
100	Pt/C catalysts with narrow size distribution prepared by colloidal-precipitation method for methanol electrooxidation. Journal of Power Sources, 2012, 217, 280-286.	7.8	22
101	Promotion effect of TiO2 on catalytic activity and stability of Pt catalyst for electrooxidation of methanol. Journal of Power Sources, 2012, 218, 93-99.	7.8	61
102	Enhanced activity of molybdovanadophosphoric acid modified Pt electrode for the electrooxidation of methanol. Journal of Electroanalytical Chemistry, 2012, 664, 14-19.	3.8	27
103	Electrocatalytic activity of Pt/C catalysts for methanol electrooxidation promoted by molybdovanadophosphoric acid. Catalysis Communications, 2011, 14, 10-14.	3.3	28
104	Recent advances in catalysts for direct methanol fuel cells. Energy and Environmental Science, 2011, 4, 2736.	30.8	868
105	The enhancement effect of MoOx on Pd/C catalyst for the electrooxidation of formic acid. Electrochimica Acta, 2011, 56, 2051-2056.	5.2	46
106	Pt nanoparticles supported on WO3/C hybrid materials and their electrocatalytic activity for methanol electro-oxidation. Journal of Power Sources, 2011, 196, 2621-2626.	7.8	63
107	High activity of Pd–WO3/C catalyst as anodic catalyst for direct formic acid fuel cell. Journal of Power Sources, 2011, 196, 2469-2474.	7.8	66
108	Single passive direct methanol fuel cell supplied with pure methanol. Journal of Power Sources, 2011, 196, 2750-2753.	7.8	50

#	Article	IF	CITATIONS
109	Novel PdAu@Au/C Coreâ^'Shell Catalyst: Superior Activity and Selectivity in Formic Acid Decomposition for Hydrogen Generation. Chemistry of Materials, 2010, 22, 5122-5128.	6.7	226
110	High activity PtRu/C catalysts synthesized by a modified impregnation method for methanol electro-oxidation. Electrochimica Acta, 2009, 54, 7274-7279.	5.2	44
111	High-quality hydrogen from the catalyzed decomposition of formic acid by Pd–Au/C and Pd–Ag/C. Chemical Communications, 2008, , 3540.	4.1	315
112	Controllable Synthesis of Pd Nanocatalysts for Direct Formic Acid Fuel Cell (DFAFC) Application: From Pd Hollow Nanospheres to Pd Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 17305-17310.	3.1	118
113	Direct electrochemistry behavior of Cytochrome c on silicon dioxide nanoparticles-modified electrode. Science in China Series B: Chemistry, 2007, 50, 304-307.	0.8	6
114	Sulfonated Poly(arylene-co-naphthalimide)s Synthesized by Copolymerization of Primarily Sulfonated Monomer and Fluorinated Naphthalimide Dichlorides as Novel Polymers for Proton Exchange Membranes. Macromolecules, 2006, 39, 6425-6432.	4.8	65
115	Electrooxidation of COadIntermediated from Methanol Oxidation on Polycrystalline Pt Electrode. Journal of Physical Chemistry B, 2006, 110, 4802-4807.	2.6	18
116	Reply to "Comment on â€ [~] Electrooxidation of COadIntermediated from Methanol Oxidation on Polycrystalline Pt Electrode'― Journal of Physical Chemistry B, 2006, 110, 18725-18728.	2.6	0
117	Study of ruthenium oxide catalyst for electrocatalytic performance in oxygen evolution. Journal of Molecular Catalysis A, 2006, 247, 7-13.	4.8	106
118	Nanostructured PtRu/C as Anode Catalysts Prepared in a Pseudomicroemulsion with Ionic Surfactant for Direct Methanol Fuel Cell. Journal of Physical Chemistry B, 2005, 109, 14325-14330.	2.6	59