Thomas H Macrae

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4949838/publications.pdf Version: 2024-02-01

ΤΗΩΜΛς Η ΜΛΟΡΛΕ

#	Article	IF	CITATIONS
1	Short-term cold stress and heat shock proteins in the crustacean Artemia franciscana. Cell Stress and Chaperones, 2020, 25, 1083-1097.	2.9	10
2	RNA interference of Hsp70 in Artemia franciscana nauplii and its effect on morphology, growth, survival and immune response. Aquaculture, 2020, 520, 735012.	3.5	7
3	Hsp70 knockdown reduced the tolerance of Litopenaeus vannamei post larvae to low pH and salinity. Aquaculture, 2019, 512, 734346.	3.5	13
4	The synthesis of diapause-specific molecular chaperones in embryos of Artemia franciscana is determined by the quantity and location of heat shock factor 1 (Hsf1). Cell Stress and Chaperones, 2019, 24, 385-392.	2.9	6
5	Knockdown of the small heat-shock protein p26 by RNA interference modifies the diapause proteome of <i>Artemia franciscana</i> . Biochemistry and Cell Biology, 2019, 97, 471-479.	2.0	7
6	Identification of RNAi-related genes and transgenerational efficiency of RNAi in Artemia franciscana. Aquaculture, 2019, 501, 285-292.	3.5	7
7	Non-lethal heat shock induces Hsp70 synthesis and promotes tolerance against heat, ammonia and metals in post-larvae of the white leg shrimp Penaeus vannamei (Boone, 1931). Aquaculture, 2018, 483, 21-26.	3.5	33
8	ArHsp40 and ArHsp40-2 contribute to stress tolerance and longevity in <i>Artemia franciscana</i> , but only ArHsp40 influences diapause entry. Journal of Experimental Biology, 2018, 221, .	1.7	25
9	Post-diapause synthesis of ArHsp40-2, a type 2 J-domain protein from Artemia franciscana, is developmentally regulated and induced by stress. PLoS ONE, 2018, 13, e0201477.	2.5	26
10	Stress tolerance in diapausing embryos of Artemia franciscana is dependent on heat shock factor 1 (Hsf1). PLoS ONE, 2018, 13, e0200153.	2.5	19
11	Knockdown of heat shock protein 70 (Hsp70) by RNAi reduces the tolerance of Artemia franciscana nauplii to heat and bacterial infection. Journal of Experimental Marine Biology and Ecology, 2017, 487, 106-112.	1.5	32
12	ArHsp40, a type 1 J-domain protein, is developmentally regulated and stress inducible in post-diapause Artemia franciscana. Cell Stress and Chaperones, 2016, 21, 1077-1088.	2.9	9
13	Stress tolerance during diapause and quiescence of the brine shrimp, Artemia. Cell Stress and Chaperones, 2016, 21, 9-18.	2.9	78
14	Non-Lethal Heat Shock of the Asian Green Mussel, Perna viridis, Promotes Hsp70 Synthesis, Induces Thermotolerance and Protects Against Vibrio Infection. PLoS ONE, 2015, 10, e0135603.	2.5	31
15	Small Heat Shock Proteins and Diapause in the Crustacean, Artemia franciscana. Heat Shock Proteins, 2015, , 563-578.	0.2	1
16	Insect Heat Shock Proteins During Stress and Diapause. Annual Review of Entomology, 2015, 60, 59-75.	11.8	444
17	The induction of Hsp70 synthesis by non-lethal heat shock confers thermotolerance and resistance to lethal ammonia stress in the common carp, <i>Cyprinus carpio</i> (Linn). Aquaculture Research, 2014, 45, 1706-1712.	1.8	26
18	Artemin, a Diapause-Specific Chaperone, Contributes to the Stress Tolerance of <i>Artemia</i> Cysts and Influences Their Release from Females. Journal of Experimental Biology, 2014, 217, 1719-24.	1.7	28

#	Article	IF	CITATIONS
19	Group 1 LEA proteins contribute to the desiccation and freeze tolerance of Artemia franciscana embryos during diapause. Cell Stress and Chaperones, 2014, 19, 939-948.	2.9	45
20	Functional differentiation of small heat shock proteins in diapauseâ€destined <i><scp>A</scp>rtemia</i> embryos. FEBS Journal, 2013, 280, 4761-4772.	4.7	34
21	The Small Heat Shock Protein p26 Aids Development of Encysting Artemia Embryos, Prevents Spontaneous Diapause Termination and Protects against Stress. PLoS ONE, 2012, 7, e43723.	2.5	49
22	Priming the prophenoloxidase system of Artemia franciscana by heat shock proteins protects against Vibrio campbellii challenge. Fish and Shellfish Immunology, 2011, 31, 134-141.	3.6	54
23	Stress response for disease control in aquaculture. Reviews in Aquaculture, 2011, 3, 120-137.	9.0	69
24	The structural stability and chaperone activity of artemin, a ferritin homologue from diapause-destined Artemia embryos, depend on different cysteine residues. Cell Stress and Chaperones, 2011, 16, 133-141.	2.9	25
25	Gene expression, metabolic regulation and stress tolerance during diapause. Cellular and Molecular Life Sciences, 2010, 67, 2405-2424.	5.4	199
26	Improving the longâ€ŧerm storage of a mammalian biosensor cell line via genetic engineering. Biotechnology and Bioengineering, 2010, 106, 474-481.	3.3	5
27	Diapause termination and development of encysted <i>Artemia</i> embryos: roles for nitric oxide and hydrogen peroxide. Journal of Experimental Biology, 2010, 213, 1464-1470.	1.7	61
28	Evidence for multiple group 1 late embryogenesis abundant proteins in encysted embryos of Artemia and their organelles. Journal of Biochemistry, 2010, 148, 581-592.	1.7	43
29	Truncation attenuates molecular chaperoning and apoptosis inhibition by p26, a small heat shock protein from <i>Artemia franciscana</i> . Biochemistry and Cell Biology, 2010, 88, 937-946.	2.0	4
30	A Molecular Overview of Diapause in Embryos of the Crustacean, Artemia franciscana. Topics in Current Genetics, 2010, , 165-187.	0.7	10
31	Ingestion of bacteria overproducing DnaK attenuates Vibrio infection of Artemia franciscana larvae. Cell Stress and Chaperones, 2009, 14, 603-609.	2.9	25
32	Cloning and sequencing of tubulin cDNAs from Artemia franciscana: evidence for differential expression of α- and β-tubulin genes. Biochemistry and Cell Biology, 2009, 87, 989-997.	2.0	1
33	Exposure of gnotobiotic Artemia franciscana larvae to abiotic stress promotes heat shock protein 70 synthesis and enhances resistance to pathogenic Vibrio campbellii. Cell Stress and Chaperones, 2008, 13, 59-66.	2.9	62
34	ArHsp22, a developmentally regulated small heat shock protein produced in diapauseâ€destined <i>Artemia</i> embryos, is stress inducible in adults. FEBS Journal, 2008, 275, 3556-3566.	4.7	54
35	ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of <i>Artemia franciscana</i> . Biochemical Journal, 2008, 411, 605-611.	3.7	57
36	Gene expression in diapause-destined embryos of the crustacean, Artemia franciscana. Mechanisms of Development, 2007, 124, 856-867.	1.7	39

#	Article	IF	CITATIONS
37	Functional characterization of artemin, a ferritin homolog synthesized in Artemia embryos during encystment and diapause. FEBS Journal, 2007, 274, 1093-1101.	4.7	76
38	Developmentally regulated synthesis of p8, a stress-associated transcription cofactor, in diapause-destined embryos of Artemia franciscana. Cell Stress and Chaperones, 2007, 12, 255.	2.9	36
39	Preparation and Characterization of Posttranslationally Modified Tubulins From Artemia franciscana. Methods in Molecular Medicine, 2007, , 45-63.	0.8	Ο
40	Diversity, structure, and expression of the gene for p26, a small heat shock protein from Artemia. Genomics, 2006, 88, 230-240.	2.9	30
41	Inhibition of apoptosis by p26: implications for small heat shock protein function during Artemia development. Cell Stress and Chaperones, 2006, 11, 71.	2.9	41
42	Structural and functional roles for beta-strand 7 in the alpha-crystallin domain of p26, a polydisperse small heat shock protein from Artemia franciscana. FEBS Journal, 2006, 273, 1020-1034.	4.7	25
43	Characterization of the microtubule proteome during post-diapause development of Artemia franciscana. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 920-928.	2.3	11
44	Characterization of novel sequence motifs within N- and C-terminal extensions of p26, a small heat shock protein from Artemia franciscana. FEBS Journal, 2005, 272, 5230-5243.	4.7	24
45	Spatial organization and isotubulin composition of microtubules in epidermal tendon cells ofArtemia franciscana. Journal of Morphology, 2005, 263, 203-215.	1.2	6
46	The small heat shock proteins and their role in human disease. FEBS Journal, 2005, 272, 2613-2627.	4.7	290
47	A small stress protein acts synergistically with trehalose to confer desiccation tolerance on mammalian cells. Cryobiology, 2005, 51, 15-28.	0.7	98
48	Oligomerization, Chaperone Activity, and Nuclear Localization of p26, a Small Heat Shock Protein from Artemia franciscana. Journal of Biological Chemistry, 2004, 279, 39999-40006.	3.4	53
49	Molecular chaperones, stress resistance and development in Artemia franciscana. Seminars in Cell and Developmental Biology, 2003, 14, 251-258.	5.0	103
50	Expressed sequence tag (EST)-based characterization of gene regulation inArtemialarvae. Invertebrate Reproduction and Development, 2003, 44, 33-44.	0.8	11
51	A small heat shock∫î±-crystallin protein from encysted Artemia embryos suppresses tubulin denaturation. Cell Stress and Chaperones, 2003, 8, 183.	2.9	40
52	Artemia Morphology and Structure. , 2002, , 1-37.		6
53	Microtubule cold stability in supporting cells of the gerbil auditory sensory epithelium: correlation with tubulin post-translational modifications. Cell and Tissue Research, 2002, 307, 57-67.	2.9	17
54	Functional analysis of a small heat shock/α-crystallin protein fromArtemia franciscana. FEBS Journal, 2002, 269, 933-942.	0.2	50

#	Article	IF	CITATIONS
55	Molecular characterization of artemin and ferritin from Artemia franciscana. FEBS Journal, 2002, 270, 137-145.	0.2	59
56	Posttranslationally modified tubulins and microtubule organization in hemocytes of the brine shrimp,Artemia franciscana. , 2000, 244, 153-166.		10
5 7	Maturation of steroid receptors: an example of functional cooperation among molecular chaperones and their associated proteins. Cell Stress and Chaperones, 2000, 5, 76.	2.9	62
58	Transcription factors and their genes in higher plants. Functional domains, evolution and regulation. FEBS Journal, 1999, 262, 247-257.	0.2	310
59	Flagellar Morphogenesis: Protein Targeting and Assembly in the Paraflagellar Rod of Trypanosomes. Molecular and Cellular Biology, 1999, 19, 8191-8200.	2.3	95
60	Characterization of Î ³ -tubulin inArtemia: Isoform composition and spatial distribution in polarized cells of the larval epidermis. , 1998, 40, 331-341.		6
61	Molecular Characterization of a Small Heat Shock/α-Crystallin Protein in Encysted Artemia Embryos. Journal of Biological Chemistry, 1997, 272, 19051-19058.	3.4	88
62	Tubulin Post-Translational Modifications. Enzymes and Their Mechanisms of Action. FEBS Journal, 1997, 244, 265-278.	0.2	267
63	Purification, Structure and In vitro Molecular-Chaperone Activity of Artemia P26, a Small Heat-Shockh/alpha-Crystallin Protein. FEBS Journal, 1997, 243, 225-232.	0.2	106
64	Relative growth of the tendinal cell and muscle in larvalArtemia. Invertebrate Reproduction and Development, 1995, 28, 205-210.	0.8	4
65	Nuclear-Cytoplasmic Translocations of Protein p26 during Aerobic-Anoxic Transitions in Embryos of Artemia franciscana. Experimental Cell Research, 1995, 219, 1-7.	2.6	78
66	Organization of the cytoskeleton in brine shrimp setal cells is molt-dependent. Canadian Journal of Zoology, 1995, 73, 765-774.	1.0	5
67	Production and utilization of detyrosinated tubulin in developing <i>Artemia</i> larvae: evidence for a tubulin-reactive carboxypeptidase. Biochemistry and Cell Biology, 1995, 73, 673-685.	2.0	29
68	Posttranslational modifications and assembly characteristics of goldfish tubulin. Biology of the Cell, 1993, 79, 63-70.	2.0	5
69	Towards an understanding of microtubule function and cell organization: an overview. Biochemistry and Cell Biology, 1992, 70, 835-841.	2.0	64
70	Toxicity of organic mercury compounds to the developing brine shrimp, Artemia. Ecotoxicology and Environmental Safety, 1991, 21, 68-79.	6.0	21
71	Synthesis of tubulin during early postgastrula development of Artemia: Isotubulin generation and translational regulation. Developmental Biology, 1991, 148, 138-146.	2.0	12
72	Post-translationally modified tubulins in Artemia: Prelarval development in the absence of detyrosinated tubulin. Developmental Biology, 1991, 148, 147-155.	2.0	20

#	Article	lF	CITATIONS
73	Spatial distribution of posttranslationally modified tubulins in polarized cells of developingArtemia. Cytoskeleton, 1991, 18, 189-203.	4.4	29
74	Production and characterization of monoclonal antibodies to the mammalian sperm cytoskeleton. Molecular Reproduction and Development, 1990, 25, 384-392.	2.0	10
75	<i>Artemia</i> tubulin genes and mRNA. Biochemical Society Transactions, 1987, 15, 1173-1174.	3.4	0
76	Nonneural microtubule proteins: Structure and function. BioEssays, 1987, 6, 128-132.	2.5	3
77	Reversible arrest of <i>Artemia</i> development by cadmium. Canadian Journal of Zoology, 1986, 64, 1633-1641.	1.0	36
78	Cadmium and zinc reversibly arrest development ofArtemia larvae. Bulletin of Environmental Contamination and Toxicology, 1986, 37, 289-296.	2.7	36
79	Protein Synthesis in Brine Shrimp Embryos. FEBS Journal, 1981, 117, 543-551.	0.2	29