Laurence Eaves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4949498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science, 2012, 335, 947-950.	12.6	2,268
2	Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nature Nanotechnology, 2013, 8, 100-103.	31.5	1,543
3	High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nature Nanotechnology, 2017, 12, 223-227.	31.5	996
4	Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers. Nano Letters, 2012, 12, 1707-1710.	9.1	724
5	Resonant tunnelling and negative differential conductance in graphene transistors. Nature Communications, 2013, 4, 1794.	12.8	542
6	Tuning the Bandgap of Exfoliated InSe Nanosheets by Quantum Confinement. Advanced Materials, 2013, 25, 5714-5718.	21.0	512
7	Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nature Nanotechnology, 2014, 9, 808-813.	31.5	435
8	High Broadâ€Band Photoresponsivity of Mechanically Formed InSe–Graphene van der Waals Heterostructures. Advanced Materials, 2015, 27, 3760-3766.	21.0	320
9	Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nature Electronics, 2018, 1, 344-349.	26.0	239
10	Probing the hole dispersion curves of a quantum well using resonant magnetotunneling spectroscopy. Physical Review Letters, 1991, 66, 1749-1752.	7.8	213
11	Resonant tunneling through the bound states of a single donor atom in a quantum well. Physical Review Letters, 1992, 68, 1754-1757.	7.8	213
12	Magnetic field studies of elastic scattering and optic-phonon emission in resonant-tunneling devices. Physical Review B, 1989, 39, 3438-3441.	3.2	187
13	Imaging the Electron Wave Function in Self-Assembled Quantum Dots. Science, 2000, 290, 122-124.	12.6	168
14	Direct band-gap crossover in epitaxial monolayer boron nitride. Nature Communications, 2019, 10, 2639.	12.8	162
15	Fermi-edge singularity in resonant tunneling. Physical Review Letters, 1994, 72, 2061-2064.	7.8	160
16	The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals. Scientific Reports, 2016, 6, 39619.	3.3	150
17	Electron-concentration-dependent quantum-well luminescence: Evidence for a negatively charged exciton. Physical Review B, 1995, 51, 7969-7972.	3.2	149
18	Investigation of theDXcenter in heavily dopedn-GaAs. Physical Review Letters, 1987, 59, 815-818.	7.8	147

#	Article	IF	CITATIONS
19	Character of states near the Fermi level in (Ga,Mn)As: Impurity to valence band crossover. Physical Review B, 2007, 76, .	3.2	139
20	Magnetoresistance of a two-dimensional electron gas in a strong periodic potential. Physical Review B, 1990, 42, 9229-9232.	3.2	136
21	Chaotic electron diffusion through stochastic webs enhances current flow in superlattices. Nature, 2004, 428, 726-730.	27.8	117
22	High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices. Science, 2017, 357, 181-184.	12.6	117
23	An investigation of the deep level photoluminescence spectra of InP(Mn), InP(Fe), and of undoped InP. Journal of Applied Physics, 1982, 53, 4955-4963.	2.5	105
24	Manifestations of Classical Chaos in the Energy Level Spectrum of a Quantum Well. Physical Review Letters, 1995, 75, 1142-1145.	7.8	105
25	Magnetotunneling spectroscopy of a quantum well in the regime of classical chaos. Physical Review Letters, 1994, 72, 2608-2611.	7.8	102
26	Sequential tunneling due to intersubband scattering in doubleâ€barrier resonant tunneling devices. Applied Physics Letters, 1988, 52, 212-214.	3.3	101
27	Probing the wave function of quantum confined states by resonant magnetotunneling. Physical Review B, 1993, 48, 5664-5667.	3.2	92
28	Tuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures. Science, 2016, 353, 575-579.	12.6	88
29	Observations of Magnetoquantized Interface States by Electron Tunneling in Single-Barriernâ^'(InGa)Asâ^'InPâ^'n+(InGa)AsHeterostructures. Physical Review Letters, 1987, 59, 2806-2809.	7.8	87
30	Alignment of Aromatic Peptide Tubes in Strong Magnetic Fields. Advanced Materials, 2007, 19, 4474-4479.	21.0	87
31	Electronic structure of self-assembled InAs quantum dots in GaAs matrix. Applied Physics Letters, 1998, 73, 1092-1094.	3.3	86
32	Far infrared photoconductivity from majority and minority impurities in high purity Si and Ge. Solid State Communications, 1974, 15, 1403-1408.	1.9	80
33	Magnetic field studies of negative differential conductivity in double barrier resonant tunnelling structures based on n-InP/(InGa)As. Solid-State Electronics, 1988, 31, 707-710.	1.4	80
34	Electronic processes in double-barrier resonant-tunneling structures studied by photoluminescence spectroscopy in zero and finite magnetic fields. Physical Review B, 1990, 41, 10754-10766.	3.2	80
35	Phonon-Assisted Resonant Tunneling of Electrons in Graphene–Boron Nitride Transistors. Physical Review Letters, 2016, 116, 186603.	7.8	78
36	Linear magnetoresistance due to multiple-electron scattering by low-mobility islands in an inhomogeneous conductor. Nature Communications, 2012, 3, 1097.	12.8	76

#	Article	IF	CITATIONS
37	Fourier analysis of magnetophonon and two-dimensional Shubnikov-de Haas magnetoresistance structure. Journal of Physics C: Solid State Physics, 1975, 8, 1034-1053.	1.5	75
38	Observation of space-charge bulk-up and thermalisation in an asymmetric double-barrier resonant tunnelling structure. Journal of Physics Condensed Matter, 1989, 1, 10605-10611.	1.8	75
39	Charge build-up and intrinsic bistability in an asymmetric resonant-tunnelling structure. Semiconductor Science and Technology, 1988, 3, 1060-1062.	2.0	71
40	Room Temperature Electroluminescence from Mechanically Formed van der Waals III–VI Homojunctions and Heterojunctions. Advanced Optical Materials, 2014, 2, 1064-1069.	7.3	71
41	Floating gold in cryogenic oxygen. Nature, 2003, 422, 579-579.	27.8	70
42	Nonaxisymmetric Shapes of a Magnetically Levitated and Spinning Water Droplet. Physical Review Letters, 2008, 101, 234501.	7.8	68
43	Resonant tunnelling between the chiral Landau states of twisted graphene lattices. Nature Physics, 2015, 11, 1057-1062.	16.7	64
44	Electrical and spectroscopic studies of space-charged buildup, energy relaxation and magnetically enhanced bistability in resonant-tunneling structures. Solid-State Electronics, 1989, 32, 1101-1108.	1.4	63
45	Observation of intrinsic tristability in a resonant tunneling structure. Applied Physics Letters, 1994, 64, 1248-1250.	3.3	63
46	High-order fractal states in graphene superlattices. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5135-5139.	7.1	63
47	The oscillatory magnetoresistance of electrons in a square superlattice potential. Journal of Physics Condensed Matter, 1989, 1, 8257-8262.	1.8	60
48	New nonlocal magnetoresistance effect at the crossover between the classical and quantum transport regimes. Physical Review Letters, 1991, 67, 3014-3017.	7.8	60
49	Measuring the Probability Density of Quantum Confined States. Physical Review Letters, 1995, 75, 1996-1999.	7.8	60
50	Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy. Scientific Reports, 2016, 6, 34474.	3.3	60
51	Ligandâ€induced Control of Photoconductive Gain and Doping in a Hybrid Graphene–Quantum Dot Transistor. Advanced Electronic Materials, 2015, 1, 1500062.	5.1	59
52	Quantum confined acceptors and donors in InSe nanosheets. Applied Physics Letters, 2014, 105, 221909.	3.3	58
53	Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators. Applied Physics Letters, 2015, 107,	3.3	58
54	Photoluminescence and impurity concentration in GaxIn1â^xAsyP1â^'yalloys latticeâ€matched to InP. Journal of Applied Physics, 1983, 54, 1037-1047.	2.5	57

#	Article	IF	CITATIONS
55	Observation of spin splitting in single InAs self-assembled quantum dots in AlAs. Applied Physics Letters, 1998, 73, 354-356.	3.3	57
56	Universal conductance fluctuations in the magnetoresistance of submicron-size n+-GaAs wires and laterally confined nâ^'-GaAs/(AlGa)As heterostructures. Surface Science, 1988, 196, 52-58.	1.9	54
57	Current bistability in double-barrier resonant-tunneling devices. Physical Review B, 1989, 39, 6205-6207.	3.2	53
58	Current–voltage instabilities in GaN/AlGaN resonant tunnelling structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2389-2392.	0.8	52
59	Breakdown of universal scaling of conductance fluctuations in high magnetic fields. Physical Review Letters, 1992, 69, 1248-1251.	7.8	49
60	Strain-Engineered Graphene Grown on Hexagonal Boron Nitride by Molecular Beam Epitaxy. Scientific Reports, 2016, 6, 22440.	3.3	49
61	High-Field Resonant Magnetotransport Measurements in Smalln+nn+GaAs Structures: Evidence for Electric-Field-Induced Elastic Inter-Landau-Level Scattering. Physical Review Letters, 1984, 53, 608-611.	7.8	48
62	Evidence against the negative-charge-state model for theDXcenter inn-type GaAs. Physical Review Letters, 1989, 62, 1922-1922.	7.8	48
63	Resonant tunneling through donor molecules. Physical Review B, 1994, 50, 8074-8077.	3.2	47
64	Thermal effects in quantum dot lasers. Journal of Applied Physics, 1999, 85, 625-627.	2.5	47
65	Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster. BMC Genomics, 2012, 13, 52.	2.8	47
66	Optical properties and device applications of (InGa)As self-assembled quantum dots grown on (311)B GaAs substrates. Applied Physics Letters, 1998, 73, 1415-1417.	3.3	46
67	Piezoelectric effects in In0.5Ga0.5As self-assembled quantum dots grown on (311)B GaAs substrates. Applied Physics Letters, 2000, 77, 2979-2981.	3.3	45
68	Excitation mechanisms of photoluminescence in double-barrier resonant-tunneling structures. Physical Review B, 1990, 42, 3069-3076.	3.2	44
69	Giant Quantum Hall Plateau in Graphene Coupled to an InSe van der Waals Crystal. Physical Review Letters, 2017, 119, 157701.	7.8	44
70	Temperature dependence of magnetoresistance oscillations in a two-dimensional electron gas subjected to a periodic potential. Physical Review B, 1990, 42, 9689-9692.	3.2	43
71	The magnetophonon effect in epitaxial films of n-type inp. Journal of Physics C: Solid State Physics, 1971, 4, L42-L47.	1.5	42
72	High-temperature light emission from InAs quantum dots. Applied Physics Letters, 1999, 75, 814-816.	3.3	42

#	Article	IF	CITATIONS
73	Vibrations of a diamagnetically levitated water droplet. Physical Review E, 2010, 81, 056312.	2.1	41
74	High-resolution optical absorption spectroscopy on Cr-related defects in GaAs and GaP. Journal of Physics C: Solid State Physics, 1982, 15, 1337-1343.	1.5	40
75	Breakup of the conduction band structure of diluteGaAs1â^'yNyalloys. Physical Review B, 2005, 71, .	3.2	40
76	Cryogenically enhanced magneto-Archimedes levitation. New Journal of Physics, 2005, 7, 118-118.	2.9	40
77	Lattice-Matched Epitaxial Graphene Grown on Boron Nitride. Nano Letters, 2018, 18, 498-504.	9.1	39
78	Hot-electron magnetophonon spectroscopy on micron- and sub-micron-size n+nn+GaAs structures. Journal of Physics C: Solid State Physics, 1984, 17, 6177-6190.	1.5	38
79	Comment on "AlN/GaN double-barrier resonant tunneling diodes grown by rf-plasma-assisted molecular-beam epitaxy―[Appl. Phys. Lett. 81, 1729 (2002)]. Applied Physics Letters, 2003, 83, 3626-3627.	3.3	37
80	Inter-Landau-level transitions of resonantly tunnelling electrons in tilted magnetic fields. Semiconductor Science and Technology, 1991, 6, 1021-1024.	2.0	36
81	Resonant Magnetotunneling via One-Dimensional Quantum Confined States. Physical Review Letters, 1994, 73, 1146-1149.	7.8	36
82	Carrier thermalization within a disordered ensemble of self-assembled quantum dots. Physical Review B, 2000, 62, 11084-11088.	3.2	36
83	Tailoring the electronic properties of GaAs/AlAs superlattices by InAs layer insertions. Applied Physics Letters, 2002, 81, 661-663.	3.3	36
84	Strain relaxation in stacked InAs/GaAs quantum dots studied by Raman scattering. Applied Physics Letters, 2003, 83, 3069-3071.	3.3	36
85	Microscopic Analysis of the Valence Band and Impurity Band Theories of (Ga,Mn)As. Physical Review Letters, 2010, 105, 227202.	7.8	36
86	A model for some defect-related bound exciton lines in the photoluminescence spectrum of GaAs layers grown by molecular beam epitaxy. Journal of Physics C: Solid State Physics, 1984, 17, L705-L709.	1.5	35
87	Oscillatory structures in GaAs/(AlGa)As tunnel junctions. Physical Review Letters, 1985, 55, 262-262.	7.8	35
88	Field-effect control of tunneling barrier height by exploiting graphene's low density of states. Journal of Applied Physics, 2013, 113, .	2.5	35
89	Plasmon assisted resonant tunneling in a double barrier heterostructure. Physical Review Letters, 1994, 72, 3397-3400.	7.8	34
90	Submicrometer resonant tunnelling diodes fabricated by photolithography and selective wet etching. Applied Physics Letters, 1994, 65, 1124-1126.	3.3	34

#	Article	IF	CITATIONS
91	Quantum-dot phonons in self-assembled InAs/GaAs quantum dots: Dependence on the coverage thickness. Applied Physics Letters, 2000, 77, 3556-3558.	3.3	34
92	A study of intervalley scattering in n-Si by the magnetophonon effect. Solid State Communications, 1974, 14, 1241-1245.	1.9	33
93	An energy scheme for interpreting deep-level photoconductivity and other recent optical measurement for Fe-doped InP. Journal of Physics C: Solid State Physics, 1981, 14, 5063-5068.	1.5	33
94	Emission of electrons from the ground and first excited states of self-organized InAs/GaAs quantum dot structures. Journal of Electronic Materials, 1999, 28, 486-490.	2.2	33
95	Terahertz response of hot electrons in dilute nitride Ga(AsN) alloys. Applied Physics Letters, 2006, 88, 032107.	3.3	33
96	Subterahertz Acoustical Pumping of Electronic Charge in a Resonant Tunneling Device. Physical Review Letters, 2012, 108, 226601.	7.8	33
97	Meristematic cell proliferation and ribosome biogenesis are decoupled in diamagnetically levitated Arabidopsis seedlings. BMC Plant Biology, 2013, 13, 124.	3.6	33
98	Tunnel spectroscopy of localised electronic states in hexagonal boron nitride. Communications Physics, 2018, 1, .	5.3	33
99	Positive Identification of theCr4+→Cr3+Thermal Transition in GaAs. Physical Review Letters, 1982, 49, 1728-1731.	7.8	32
100	Controlling the shape of InAs self-assembled quantum dots by thin GaAs capping layers. Journal of Crystal Growth, 2003, 251, 155-160.	1.5	32
101	Two-Dimensional Covalent Crystals by Chemical Conversion of Thin van der Waals Materials. Nano Letters, 2019, 19, 6475-6481.	9.1	32
102	High-magnetic-field Zeeman spectroscopy of the 0.84-eV Cr-related emission and absorption line in GaAs(Cr): Experiment and theory. Physical Review B, 1982, 26, 4473-4484.	3.2	31
103	Electron conduction in two-dimensionalGaAs1â^'yNychannels. Physical Review B, 2004, 69, .	3.2	31
104	High-temperature molecular beam epitaxy of hexagonal boron nitride layers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	1.2	31
105	Magnetic breakdown of a two-dimensional electron gas in a periodic potential. Physical Review B, 1991, 43, 9980-9983.	3.2	30
106	Electroluminescence and impact ionization phenomena in a doubleâ€barrier resonant tunneling structure. Applied Physics Letters, 1991, 58, 1164-1166.	3.3	30
107	Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability. Journal of the Royal Society Interface, 2011, 8, 334-344.	3.4	30
108	Hybrid magneto-electric states in resonant tunnelling structures. Superlattices and Microstructures, 1989, 5, 527-530.	3.1	29

#	Article	IF	CITATIONS
109	Zeroâ€dimensional states in macroscopic resonant tunneling devices. Applied Physics Letters, 1994, 64, 2563-2565.	3.3	29
110	Intrinsic and deepâ€level photoacoustic spectroscopy of GaAs (Cr) and of other bulk semiconductors. Applied Physics Letters, 1981, 38, 768-770.	3.3	28
111	Edge channels and the quantum-Hall-effect breakdown. Physical Review B, 1994, 49, 5379-5385.	3.2	28
112	Theory of resonant tunneling through a quantum wire. Physical Review B, 1995, 51, 1735-1742.	3.2	28
113	Indium interdiffusion in annealed and implanted InAs/(AlGa)As self-assembled quantum dots. Journal of Applied Physics, 2001, 89, 6044-6047.	2.5	28
114	Hot-electrons and negative differential conductance inGaAs1â^'xNx. Physical Review B, 2005, 72, .	3.2	28
115	Evidence for sequential tunnelling and charge build-up in double barrier resonant tunnelling devices. Surface Science, 1988, 196, 404-409.	1.9	27
116	Bifurcations and chaos in semiconductor superlattices with a tilted magnetic field. Physical Review E, 2008, 77, 026209.	2.1	27
117	Effect of low nitrogen concentrations on the electronic properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:mrow> <mml:mtext>InAs </mml:mtext> </mml:mrow> <mml:mrow Physical Review B. 2009. 80</mml:mrow </mml:mrow></mml:math 	ow ^{3.} ∕mml	:mn ²⁷ 1
118	Nonlinear Far-Infrared Magnetoabsorption and Optically Detected Magnetoimpurity Effect inn-GaAs. Physical Review Letters, 1983, 50, 1309-1312.	7.8	26
119	The resistance of two quantum point contacts in series. Journal of Physics Condensed Matter, 1989, 1, 7505-7511.	1.8	26
120	Electroluminescence investigations of electron and hole resonant tunneling inp-i-ndouble-barrier structures. Physical Review B, 1992, 45, 9513-9516.	3.2	26
121	Influence of high-index GaAs substrates on the growth of highly strained (InGa)As/GaAs heterostructures. Journal of Crystal Growth, 1999, 201-202, 276-279.	1.5	26
122	A study of intervalley scattering in n-Si by stress-dependent longitudinal magnetophonon resonance. Solid State Communications, 1974, 15, 1281-1285.	1.9	25
123	Resonant tunnelling studies of magnetoelectric quantisation in wide quantum wells. Journal of Physics Condensed Matter, 1989, 1, 4865-4871.	1.8	25
124	Landau-level pinning in wide modulation-doped quantum-well structures in the integer quantum Hall regime. Physical Review B, 1991, 44, 3436-3439.	3.2	25
125	Edge effects in a gated submicron resonant tunneling diode. Applied Physics Letters, 1992, 60, 2508-2510.	3.3	25
126	Introduction. Carbon-based electronics: fundamentals and device applications. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 189-193.	3.4	25

#	Article	IF	CITATIONS
127	Strong magnetophonon oscillations in extra-large graphene. Nature Communications, 2019, 10, 3334.	12.8	25
128	A review of the magneto-impurity effect in semiconductors. Journal of Physics C: Solid State Physics, 1979, 12, 2809-2828.	1.5	24
129	Probing the anisotropic dispersion of hole states in (100) and (311)A AlAs/GaAs/AlAs quantum wells. Semiconductor Science and Technology, 1994, 9, 298-309.	2.0	24
130	Hole spaceâ€charge buildup and evidence for sequential tunneling inpâ€type doubleâ€barrier resonant tunneling devices. Applied Physics Letters, 1992, 60, 1474-1476.	3.3	23
131	Evidence for quantum states corresponding to families of stable and chaotic classical orbits in a wide potential well. Physical Review B, 1995, 51, 18029-18032.	3.2	23
132	Time-resolved photoluminescence of InAs quantum dots in a GaAs quantum well. Applied Physics Letters, 2004, 84, 3046-3048.	3.3	23
133	Electric-field inversion asymmetry: Rashba and Stark effects for holes in resonant tunneling devices. Physical Review B, 2006, 74, .	3.2	23
134	Tunneling and magneto-tunnelling effects in n+GaAs/(AlGa)As/n-GaAs/n+GaAs devices. Journal of Physics C: Solid State Physics, 1985, 18, L605-L609.	1.5	22
135	Upconversion electroluminescence in InAs quantum dot light-emitting diodes. Applied Physics Letters, 2008, 92, .	3.3	22
136	High temperature MBE of graphene on sapphire and hexagonal boron nitride flakes on sapphire. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	1.2	22
137	Resonant tunnelling into the two-dimensional subbands of InSe layers. Communications Physics, 2020, 3, .	5.3	22
138	Study of electron–hole generation and recombination in semiconductors using the Osaka free electron laser. Physica B: Condensed Matter, 2002, 314, 431-436.	2.7	21
139	Voltage-controlled hole spin injection in nonmagneticGaAsâ^•AlAsresonant tunneling structures. Physical Review B, 2006, 73, .	3.2	21
140	Deep centre photoluminescence spectra of GaAs(Cr, Si). Journal of Physics C: Solid State Physics, 1978, 11, L771-L775.	1.5	20
141	The observation of a sharp peak in the deep-level photoconductivity spectrum of GaAs(Cr) due to the Cr2+(5T2-5E) 'intracentre' transition. Journal of Physics C: Solid State Physics, 1981, 14, L693-L697.	1.5	20
142	An investigation of the 1.36 eV photoluminescence spectrum of heat-treated InP using Zeeman spectroscopy and strain effects. Journal of Physics C: Solid State Physics, 1984, 17, 1233-1245.	1.5	20
143	A model for the origin of the oscillatory structure in the reverse bias J(V) characteristics of n+GaAs/(AlGa)As/n-GaAs/n+GaAs tunnelling devices. Journal of Physics C: Solid State Physics, 1985, 18, L885-L888.	1.5	20
144	Effect of hydrostatic pressure on the fragmented conduction band structure of dilute Ga(AsN) alloys. Physical Review B, 2005, 72, .	3.2	20

#	Article	IF	CITATIONS
145	Magnetoanisotropy of electron-correlation-enhanced tunneling through a quantum dot. Physical Review B, 2007, 75, .	3.2	20
146	Photoquantum Hall Effect and Lightâ€Induced Charge Transfer at the Interface of Graphene/InSe Heterostructures. Advanced Functional Materials, 2019, 29, 1805491.	14.9	20
147	Interpretation of the 1.03 eV photoluminescence and absorption in GaP(Cr) in terms of internal transitions of Cr3+. Journal of Physics C: Solid State Physics, 1985, 18, L449-L453.	1.5	19
148	Inverted bistability in the current-voltage characteristics of a resonant tunneling device. Solid-State Electronics, 1989, 32, 1467-1471.	1.4	19
149	Quantum confinement in laterally squeezed resonant tunneling devices. Physical Review Letters, 1992, 69, 2995-2995.	7.8	19
150	Resonance and current instabilities in AlN/GaN resonant tunnelling diodes. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 752-755.	2.7	19
151	Trion formation in narrow GaAs quantum well structures. Physical Review B, 2005, 71, .	3.2	19
152	Raman scattering in InAsâ^•(AlGa)As self-assembled quantum dots: Evidence of Al intermixing. Applied Physics Letters, 2006, 88, 141905.	3.3	19
153	Probing the intermixing in In(Ga)Asâ^•GaAs self-assembled quantum dots by Raman scattering. Journal of Applied Physics, 2006, 99, 043501.	2.5	19
154	Fock-Darwin-Like Quantum Dot States Formed by Charged Mn Interstitial Ions. Physical Review Letters, 2008, 101, 226807.	7.8	19
155	Moiré-Modulated Conductance of Hexagonal Boron Nitride Tunnel Barriers. Nano Letters, 2018, 18, 4241-4246.	9.1	19
156	Magnetoresistance effects in laterally confined n-GaAs/(AlGa)As heterostructures. Journal of Physics Condensed Matter, 1989, 1, 10413-10425.	1.8	18
157	Modulation of the luminescence spectra of InAs self-assembled quantum dots by resonant tunneling through a quantum well. Physical Review B, 2000, 62, 13595-13598.	3.2	18
158	Manipulating and Imaging the Shape of an Electronic Wave Function by Magnetotunneling Spectroscopy. Physical Review Letters, 2010, 105, 236804.	7.8	18
159	Van der Waals SnSe 2(1â^' x) S 2 x Alloys: Compositionâ€Dependent Bowing Coefficient and Electron–Phonon Interaction. Advanced Functional Materials, 2020, 30, 1908092.	14.9	18
160	Molecular beam epitaxy growth of GaAs/AlAs double-barrier resonant tunnelling devices on (311)A substrates. Semiconductor Science and Technology, 1992, 7, 267-270.	2.0	17
161	Investigating the cubic anisotropy of the confined hole subbands of an AlAs/GaAs/AlAs quantum well using resonant magnetotunneling spectroscopy. Applied Physics Letters, 1992, 61, 84-86.	3.3	17
162	Electron effective mass and mobility in heavily doped n-GaAsN probed by Raman scattering. Journal of Applied Physics, 2008, 103, 103528.	2.5	17

#	Article	IF	CITATIONS
163	Electron coherence length and mobility in highly mismatched III-N-V alloys. Applied Physics Letters, 2008, 93, .	3.3	17
164	High-Temperature Molecular Beam Epitaxy of Hexagonal Boron Nitride with High Active Nitrogen Fluxes. Materials, 2018, 11, 1119.	2.9	17
165	Universal conductance fluctuations in the magnetoresistance of submicron n+GaAs wires. Superlattices and Microstructures, 1986, 2, 381-383.	3.1	16
166	Ballistic transport in resonant tunnelling devices with wide quantum wells. Journal of Physics Condensed Matter, 1989, 1, 3025-3030.	1.8	16
167	The effect of the X conduction band minima on resonant tunnelling and charge build-up in double barrier structures based on n-GaAs/(AlGa)As. Solid-State Electronics, 1989, 32, 1731-1735.	1.4	16
168	Optical investigation of charge accumulation and bistability in an asymmetric double barrier resonant tunneling heterostructure. Surface Science, 1990, 228, 373-377.	1.9	16
169	Anisotropy of the confined hole states in a (311)AAlAs/GaAs/AlAs quantum-well system: Evidence for a camel's-back band structure. Physical Review B, 1992, 46, 15586-15589.	3.2	16
170	Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly. Journal of the Royal Society Interface, 2012, 9, 1438-1449.	3.4	16
171	An atomic carbon source for high temperature molecular beam epitaxy of graphene. Scientific Reports, 2017, 7, 6598.	3.3	16
172	Magnetophonon spectroscopy of Dirac fermion scattering by transverse and longitudinal acoustic phonons in graphene. Physical Review B, 2019, 100, .	3.2	16
173	Magnetic field and capacitance studies of intrinsic bistability in double-barrier structures. Superlattices and Microstructures, 1989, 6, 59-62.	3.1	15
174	A new technique for directly probing the intrinsic tristability and its temperature dependence in a resonant tunneling diode. Solid-State Electronics, 1994, 37, 961-964.	1.4	15
175	Magnetic-field-induced miniband conduction in semiconductor superlattices. Physical Review B, 2007, 76, .	3.2	15
176	GaAs/(AlGa)As tunnelling devices: Hydrostatic pressure investigation and model for the J(V) characteristics. Surface Science, 1986, 174, 472-477.	1.9	14
177	Ballistic transmission in perpendicular quantum point contacts. Physical Review B, 1989, 40, 10033-10035.	3.2	14
178	Landau-level populations and slow energy relaxation of a two-dimensional electron gas probed by tunneling spectroscopy. Physical Review B, 1995, 52, 4666-4669.	3.2	14
179	Substrate orientation dependence of island nucleation critical thickness in strained heterostructures. Europhysics Letters, 1999, 47, 701-707.	2.0	14
180	Laser Location and Manipulation of a Single Quantum Tunneling Channel in an InAs Quantum Dot. Physical Review Letters, 2012, 108, 117402.	7.8	14

#	Article	IF	CITATIONS
181	An investigation of the valence bands of germanium, InSb and GaAs by means of the magnetophonon effect. Journal of Physics C: Solid State Physics, 1977, 10, 2831-2848.	1.5	13
182	Optical studies of GaAs:Ti. Journal of Physics C: Solid State Physics, 1986, 19, L525-L529.	1.5	13
183	Quantised Hall effect and magnetoresistance through a quantum point contact. Journal of Physics Condensed Matter, 1989, 1, 7499-7503.	1.8	13
184	Reflection of ballistic electrons from diffusive regions. Physical Review B, 1994, 49, 2265-2268.	3.2	13
185	Magnetic field quenching of miniband conduction in quasi-one-dimensional superlattices. Physica B: Condensed Matter, 1999, 272, 190-193.	2.7	13
186	Intra-shell transitions of 3D metal ions (Fe, Co, Ni) in II–VI wide-gap semiconductor alloys. Physica B: Condensed Matter, 1999, 273-274, 848-851.	2.7	13
187	Magnetotunneling spectroscopy of an individual quantum dot in a gated tunnel diode. Applied Physics Letters, 2001, 79, 3275-3277.	3.3	13
188	Magnetic-Field-Induced Suppression of Electronic Conduction in a Superlattice. Physical Review Letters, 2004, 93, 146801.	7.8	13
189	Magnetophotoluminescence study of the influence of substrate orientation and growth interruption on the electronic properties of InAsâ•GaAs quantum dots. Journal of Applied Physics, 2004, 96, 2535-2539.	2.5	13
190	Excited states of ring-shaped (InGa)As quantum dots in aGaAsâ^•(AlGa)Asquantum well. Physical Review B, 2005, 72, .	3.2	13
191	Electron effective mass and Si-donor binding energy inGaAs1â^'xNxprobed by a high magnetic field. Physical Review B, 2008, 77, .	3.2	13
192	Defect-Assisted High Photoconductive UV–Visible Gain in Perovskite-Decorated Graphene Transistors. ACS Applied Electronic Materials, 2020, 2, 147-154.	4.3	13
193	Comment on the time-resolved photoluminescence study of MBE-growth-induced defect lines. Journal of Physics C: Solid State Physics, 1986, 19, L445-L446.	1.5	12
194	Electron tunnelling into interfacial Landau states in single barrier N-type (InGa)As/InP/(InGa)As heterostructures. Solid-State Electronics, 1988, 31, 711-716.	1.4	12
195	Resonant magnetotunnelling spectroscopy: a direct probe of the complicated dispersion curves and negative mass behaviour of holes confined in a quantum well. Surface Science, 1992, 263, 199-206.	1.9	12
196	Resonant tunnelling through a single impurity in high magnetic fields: Probing a two-dimensional electron gas on a nanometre scale. Physica B: Condensed Matter, 1995, 211, 433-436.	2.7	12
197	Optical properties of ZnSe, ZnCdSe and ZnSSe alloys doped with iron. Journal of Crystal Growth, 2000, 214-215, 576-580.	1.5	12
198	Dependence of quantum-dot formation on substrate orientation studied by magnetophotoluminescence. Applied Physics Letters, 2002, 81, 1480-1482.	3.3	12

#	Article	IF	CITATIONS
199	Tunneling spectroscopy of mixed stable-chaotic electron dynamics in a quantum well. Physical Review B, 2002, 65, .	3.2	12
200	Current flow and energy dissipation in low-dimensional semiconductor superlattices. Applied Physics Letters, 2006, 88, 052111.	3.3	12
201	Measuring the hole chemical potential in ferromagnetic Ga1â^'xMnxAsâ^•GaAs heterostructures by photoexcited resonant tunneling. Applied Physics Letters, 2007, 90, 082106.	3.3	12
202	Magnetophonon oscillations in the negative differential conductance of dilute nitrideGaAs1â~'xNxsubmicron diodes. Physical Review B, 2007, 75, .	3.2	12
203	Energy relaxation of photoexcited electrons in n- and p-Ge by magneto-impurity and magnetophonon processes. Journal of Physics C: Solid State Physics, 1977, 10, L585-L589.	1.5	11
204	Tunnelling and hot electron effects in single barrier heterostructure devices. Superlattices and Microstructures, 1986, 2, 49-55.	3.1	11
205	Effect of spatial correlation ofDXcenters on the mobility in heavily dopednâ€ŧype GaAs. Applied Physics Letters, 1992, 60, 1993-1995.	3.3	11
206	High magnetic field studies of resonant tunneling via shallow impurities in δ-doped quantum wells. Physica B: Condensed Matter, 1993, 184, 241-245.	2.7	11
207	Mesoscopic effects in resonant tunnelling diodes. Solid-State Electronics, 1994, 37, 965-968.	1.4	11
208	3D island nucleation behaviour on high index substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 74, 239-241.	3.5	11
209	Magnetic-field-induced recovery of resonant tunneling into a disordered quantum well subband. Physical Review B, 2003, 68, .	3.2	11
210	Effect of inter-miniband tunneling on current resonances due to the formation of stochastic conduction networks in superlattices. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 285-288.	2.7	11
211	Using randomly distributed charges to create quantum dots. Physical Review B, 2010, 81, .	3.2	11
212	Cyclotron resonance mass and Fermi energy pinning in the In(AsN) alloy. Applied Physics Letters, 2011, 98, .	3.3	11
213	Picosecond strain pulses probed by the photocurrent in semiconductor devices with quantum wells. Physical Review B, 2011, 83, .	3.2	11
214	Quantum oscillations in the photocurrent of GaAs/AlAsp-i-ndiodes. Physical Review B, 2014, 89, .	3.2	11
215	An investigation of the conduction band edge in CdSe by the magnetophonon effect. Journal of Physics C: Solid State Physics, 1972, 5, L19-L21.	1.5	10
216	Far-infrared absorption of large electron-hole drops in stressed Ge. Solid State Communications, 1976, 19, 1023-1025.	1.9	10

#	Article	IF	CITATIONS
217	Decay of the deep-level extrinsic photoconductivity response of n-GaAs(Cr,Si) at liquid-helium temperature. Journal of Physics C: Solid State Physics, 1979, 12, L725-L728.	1.5	10
218	The observation of the fractional quantum Hall effect in a single (AlGa)As/GaAs/(AlGa)As quantum well. Semiconductor Science and Technology, 1990, 5, 792-794.	2.0	10
219	Optical investigation of a very asymmetric double-barrier resonant-tunneling structure. Physical Review B, 1992, 45, 6721-6730.	3.2	10
220	Nonlocal magnetoresistance of diffusive wires in high magnetic fields. Physica B: Condensed Matter, 1993, 184, 341-350.	2.7	10
221	Quantum chaos in resonant tunneling diodes. Physica B: Condensed Matter, 1994, 201, 367-373.	2.7	10
222	Resonant tunnelling between edge states in mesoscopic wires. Surface Science, 1994, 305, 624-628.	1.9	10
223	Quantum Hall effect breakdown in two-dimensional hole gases. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 136-139.	2.7	10
224	Use of stochastic web patterns to control electron transport in semiconductor superlattices. Physica D: Nonlinear Phenomena, 2004, 199, 166-172.	2.8	10
225	Magneto-photoluminescence of stacked self-assembled InAs/GaAs quantum dots. Physica B: Condensed Matter, 2004, 346-347, 428-431.	2.7	10
226	Spin splitting of X-valley-related donor impurity states in an AlAs barrier. Physical Review B, 2005, 71, .	3.2	10
227	The g value of Co2+(4A2) ground state in InP measured by EPR. Journal of Physics C: Solid State Physics, 1983, 16, L49-L52.	1.5	9
228	Degenerate n-type GaAs doped with Cr: an intermediate-valence and/or Kondo system?. Journal of Physics C: Solid State Physics, 1985, 18, 1431-1437.	1.5	9
229	Optically induced changes of the Cr-related absorption lines in GaP:Cr-evidence for internal transitions of CrtGa3+. Journal of Physics C: Solid State Physics, 1986, 19, L683-L687.	1.5	9
230	AlAs and InAs mode LO phonon emission assisted tunneling in (InGa)As/(AlIn)As double barrier structures. Solid-State Electronics, 1989, 32, 1191-1195.	1.4	9
231	Ballistic magnetoresistance and the Hall effect in a restricted geometry. Journal of Physics Condensed Matter, 1990, 2, 6541-6546.	1.8	9
232	Quantum transport in diffusive microstructures in high magnetic fields. Superlattices and Microstructures, 1993, 13, 11-20.	3.1	9
233	Transport in sub-micron resonant tunnelling devices. Physica B: Condensed Matter, 1993, 189, 125-134.	2.7	9
234	Elastic and inelastic tunneling in a strained-layer double-barrier resonant-tunneling structure. Physical Review B, 1993, 48, 4487-4491.	3.2	9

#	Article	IF	CITATIONS
235	Magnetic-field dependence of the electrical characteristics of a gated resonant-tunneling diode. Physical Review B, 1994, 49, 2261-2264.	3.2	9
236	Intrinsic bistability in the electroluminescence spectrum and current-voltage characteristics of triple-barrier p-i-n resonant tunneling devices. Surface Science, 1994, 305, 353-357.	1.9	9
237	Electrical characterization of single barrier GaAs/GaN/GaAs heterostructures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 1582.	1.6	9
238	Luminescence from GaAs/AlGaAs quantum wells induced by mid-infrared free electron laser pulses. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 555-558.	2.7	9
239	Conductance fluctuations in a double-barrier resonant tunneling device. Physical Review B, 2000, 62, 16721-16726.	3.2	9
240	Quantum Hall effect breakdown steps: evidence for an instability induced by inter-Landau level scattering. Physica B: Condensed Matter, 2001, 298, 1-7.	2.7	9
241	Strong Effect of Resonant Impurities on Landau-Level Quantization. Physical Review Letters, 2006, 96, 236802.	7.8	9
242	Sensitive detection of photoexcited carriers by resonant tunneling through a single quantum dot. Physical Review B, 2009, 79, .	3.2	9
243	Electric field-induced quasi-elastic inter-landau level scattering in the space-charge-limited magnetoconductivity of n+nâ°'n+ InP structures. Superlattices and Microstructures, 1986, 2, 415-419.	3.1	8
244	Inelastic electron scattering in pseudo-one-dimensional metal wires. Journal of Physics C: Solid State Physics, 1987, 20, L249-L255.	1.5	8
245	Magnetic field investigations of resonant tunnelling devices grown by MOCVD. Superlattices and Microstructures, 1989, 6, 193-197.	3.1	8
246	Quantum interference and space charge effects in double barrier structures incorporating wide quantum wells. Solid-State Electronics, 1989, 32, 1627-1631.	1.4	8
247	Impurity-assisted tunnelling as a probe of the donor wavefunction in n-GaAs. Journal of Physics Condensed Matter, 1990, 2, 4439-4435.	1.8	8
248	Hot hole effects in single barrierpâ€ŧype GaAs/(AlGa)As/GaAs tunnel structures. Applied Physics Letters, 1991, 59, 3124-3126.	3.3	8
249	Tunneling spectroscopy of energy levels in wide quantum wells in tilted magnetic fields. Physical Review B, 1992, 45, 8749-8751.	3.2	8
250	Photohole-induced resonant tunneling of electrons in selectively etched small area GaAs/AlAs double barrier diodes. Solid-State Electronics, 1994, 37, 973-976.	1.4	8
251	Resonant magnetotunneling through individual self-assembled InAs quantum dots. Superlattices and Microstructures, 1997, 21, 255-258.	3.1	8
252	Monte Carlo study on electron motion under mid-infrared free-electron-laser pulses. Physica B: Condensed Matter, 1999, 272, 431-433.	2.7	8

#	Article	IF	CITATIONS
253	Optical and morphological properties of In(Ga)As/GaAs quantum dots grown on novel index surfaces. Microelectronics Journal, 1999, 30, 419-425.	2.0	8
254	Universality of the Stokes Shift for a Disordered Ensemble of Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 41-45.	1.5	8
255	Double injection currents in p-i-n diodes incorporating self-assembled quantum dots. Nanotechnology, 2001, 12, 515-517.	2.6	8
256	Emission energy and polarization tuning of InAs/GaAs self-assembled quantum dots by growth interruption. Journal of Crystal Growth, 2003, 251, 192-195.	1.5	8
257	Sharp-line electroluminescence from individual quantum dots by resonant tunneling injection of carriers. Applied Physics Letters, 2006, 89, 092106.	3.3	8
258	Probing the sensitivity of electron wave interference to disorder-induced scattering in solid-state devices. Physical Review B, 2012, 85, .	3.2	8
259	Shape oscillations of an electrically charged diamagnetically levitated droplet. Applied Physics Letters, 2012, 100, 114106.	3.3	8
260	The photoluminescence associated with trigonal Cr in GaAs: a discussion of two recently proposed models. Journal of Physics C: Solid State Physics, 1982, 15, 6257-6269.	1.5	7
261	Frequency dependence of hopping conductivity in n-GaAs. Journal of Physics C: Solid State Physics, 1984, 17, L345-L348.	1.5	7
262	Resonant magnetoresistance measurements in short (â^¼ 1 μm) n+nn+ GaAs structures: Investigation of the electric field dependence of quasi-elastic inter-Landau level scattering processes. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1985, 134, 47-52.	0.9	7
263	Resonant and non-resonant processes in double barrier structures. Superlattices and Microstructures, 1989, 6, 63-66.	3.1	7
264	Intrinsic bistability and hole-charge buildup in asymmetricp-type resonant-tunneling structures. Physical Review B, 1994, 49, 10745-10748.	3.2	7
265	High efficiency submicron lightâ€emitting resonant tunneling diodes. Applied Physics Letters, 1994, 65, 3332-3334.	3.3	7
266	Observation of resonant hole tunnelling through a (110) oriented AlAs/GaAs/AlAs quantum well. Semiconductor Science and Technology, 1996, 11, 1424-1428.	2.0	7
267	Magnetic field variation of tunnelling gap between disordered two-dimensional electron systems. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 602-605.	2.7	7
268	Tunneling spectroscopy of quasi-two-dimensional plasmons. Physics-Uspekhi, 2001, 44, 1301-1304.	2.2	7
269	Modifying the electronic properties of GaAsâ^•AlAs superlattices with low-density nitrogen doping. Journal of Applied Physics, 2006, 100, 063718.	2.5	7
270	High field electron dynamics in dilute nitride Ga(AsN). Applied Physics Letters, 2008, 93, .	3.3	7

#	Article	IF	CITATIONS
271	Ultrafast acoustical gating of the photocurrent in apâ^'iâ^'ntunneling diode incorporating a quantum well. Physical Review B, 2009, 80, .	3.2	7
272	Hot electron transport and impact ionization in the narrow energy gap InAs1â^'xNx alloy. Applied Physics Letters, 2010, 96, 052115.	3.3	7
273	Study of ultraviolet lightâ€induced aging of ZnS phosphor powder by twoâ€beam photoacoustic spectroscopy. Applied Physics Letters, 1981, 39, 558-560.	3.3	6
274	Pressure-dependent studies of the DX centre in Si- and Sn-doped n+GaAs. Superlattices and Microstructures, 1988, 4, 33-38.	3.1	6
275	Electron heating in a submicron-size n+ GaAs wire. Superlattices and Microstructures, 1989, 5, 575-578.	3.1	6
276	Magnetoquantum effects in two-dimensional accumulation layers of single-barrier tunnel structures. Superlattices and Microstructures, 1991, 9, 23-25.	3.1	6
277	Magneto-tunneling spectroscopy of GaAsî—,AlGaAs double barrier tunneling devices in pulsed high magnetic fields up to 40T. Superlattices and Microstructures, 1991, 9, 527-531.	3.1	6
278	High pressure studies of resonant tunnelling and superlattice phenomena. Semiconductor Science and Technology, 1991, 6, 422-427.	2.0	6
279	Luminescence studies of resonant tunneling in a triple barrier structure with strongly coupled quantum wells. Solid-State Electronics, 1994, 37, 721-724.	1.4	6
280	Tunneling into classically chaotic orbits in quantum wells. Surface Science, 1994, 305, 511-515.	1.9	6
281	Low-frequency impedance of quantized Hall conductors. Physical Review B, 2000, 62, 12990-12996.	3.2	6
282	Positively charged defects associated with self-assembled quantum dot formation. Applied Physics Letters, 2000, 76, 3570-3572.	3.3	6
283	Photoresponse spectra in p-i-n diodes containing quantum dots. Nanotechnology, 2002, 13, 94-96.	2.6	6
284	Quantum Hall effect breakdown: can the bootstrap heating and inter-Landau-level scattering models be reconciled?. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 178-181.	2.7	6
285	Measuring the energy levels and wave functions in a single quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 634-637.	2.7	6
286	Optical Imaging of Electrical Carrier Injection into Individual InAs Quantum Dots. Physical Review Letters, 2010, 105, 257401.	7.8	6
287	Nanoscale Potential Fluctuations in (GaMn)As/GaAs Heterostructures: From Individual Ions to Charge Clusters and Electrostatic Quantum Dots. Nano Letters, 2010, 10, 4874-4879.	9.1	6
288	Impact ionization and large room-temperature magnetoresistance in micron-sized high-mobility InAs channels. Physical Review B, 2014, 90, .	3.2	6

#	Article	IF	CITATIONS
289	Comment on the Effect of Higher Harmonics in the Interpretation of Spin-Flip Magnetophonon Resonance. Physical Review Letters, 1976, 37, 1030-1032.	7.8	5
290	Oscillatory structure in the reverse bias J(V) plots of n+GaAs/(AlGa)As/nâ^'GaAs/n+GaAs structures. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1985, 134, 12-16.	0.9	5
291	Magnetophonon resonance in n+n-n+lnP up to 40 T. Semiconductor Science and Technology, 1988, 3, 895-901.	2.0	5
292	The observation of electroluminescence in a double barrier resonant tunnelling structure. Superlattices and Microstructures, 1990, 8, 391-394.	3.1	5
293	The effect of conduction band anisotropy on hybrid magneto-electric states in resonant tunneling devices. Surface Science, 1990, 228, 433-436.	1.9	5
294	Low dimensional devices: High magnetic field and optical spectroscopy studies of resonant tunneling and quantum well phenomena. Microelectronic Engineering, 1991, 15, 661.	2.4	5
295	Non-local magnetoresistance at the crossover between the classical and quantum transport regimes. Surface Science, 1992, 263, 298-302.	1.9	5
296	Zero dimensional resonant tunneling through single donor states. Superlattices and Microstructures, 1992, 11, 149-153.	3.1	5
297	Observation of the fractional quantum Hall effect in GaAs-(Ga, Al)As quantum well structures. Physica B: Condensed Matter, 1993, 184, 81-85.	2.7	5
298	Effect of a parallel magnetic field on the resonant-tunneling current through a quantum wire. Physical Review B, 1995, 52, 1504-1507.	3.2	5
299	Magneto-tunnelling spectroscopy of a quantum dot charged with a few electrons. Surface Science, 1996, 361-362, 644-647.	1.9	5
300	Mesoscopic conductance fluctuations in impurity-assisted resonant tunnelling. Solid-State Electronics, 1996, 40, 409-412.	1.4	5
301	Effect of the substrate orientation on the self-organisation of (InGa)As/GaAs quantum dots. Microelectronics Journal, 1999, 30, 319-322.	2.0	5
302	A hydrodynamic description of quantum Hall effect breakdown. Physica B: Condensed Matter, 1999, 272, 130-132.	2.7	5
303	An eddy viscosity model of the dissipative voltage steps in quantum Hall effect breakdown. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 9, 45-53.	2.7	5
304	Investigation of radiative recombination from Mn-related states in Ga1â^'xMnxAs. Applied Physics Letters, 2003, 83, 866-868.	3.3	5
305	Magnetic field tuning of hot electron resonant capture in a semiconductor device. Applied Physics Letters, 2007, 91, 142104.	3.3	5
306	Graphene's non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects. Nature Communications, 2021, 12, 6392.	12.8	5

#	Article	IF	CITATIONS
307	Exciton and Phonon Radiative Linewidths in Monolayer Boron Nitride. Physical Review X, 2022, 12, .	8.9	5
308	Series addition of ballistic resistors. Solid-State Electronics, 1989, 32, 1303-1307.	1.4	4
309	Photocreated holes and their effect on the luminescence, space charge and resonant tunnelling current in double barrier structures. Superlattices and Microstructures, 1990, 8, 195-200.	3.1	4
310	High pressure and high magnetic field studies of the two-dimensional electron gas at a CdTe/InSb interface. Surface Science, 1990, 229, 428-432.	1.9	4
311	Intrinsic bistability in the current-voltage characteristics and electroluminescent emission of resonant tunnelling structures. Physica B: Condensed Matter, 1991, 175, 263-270.	2.7	4
312	Single electron tunnelling through a donor state in a gated resonant tunnelling device. Surface Science, 1992, 263, 438-441.	1.9	4
313	Magneto-tunneling in the n-type-GaAs/AlGaAs wide-well double barrier structure under transverse high magnetic fields. Solid State Communications, 1992, 81, 1019-1023.	1.9	4
314	Photoresistance imaging of quantum Hall devices. Semiconductor Science and Technology, 1994, 9, 2110-2115.	2.0	4
315	Modulated blue shift of the quantum well electroluminescence in a GaAs/AlAs superlattice resonant tunnelling device. Solid-State Electronics, 1994, 37, 843-846.	1.4	4
316	Quantum Hall effect breakdown of two dimensional hole gases. Microelectronic Engineering, 1999, 47, 35-37.	2.4	4
317	Electroluminescence from Individual InAs Self-Assembled Quantum Dots. Physica Status Solidi A, 2000, 178, 307-311.	1.7	4
318	Self-assembling of In(Ga)As/GaAs quantum dots on (N11) substrates: the (311)A case. Micron, 2000, 31, 309-313.	2.2	4
319	Piezoelectric Effects on the Electron-Hole Dipole in In0.5Ga0.5As/GaAs Self-Assembled Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 37-40.	1.5	4
320	Anisotropy of electronic wave functions in self-assembled InAs dots embedded in the center of a GaAs quantum well studied by magnetotunneling spectroscopy. JETP Letters, 2001, 74, 41-45.	1.4	4
321	Controlling the electron tunneling through InAs self-assembled dots. Journal of Applied Physics, 2002, 91, 3474-3476.	2.5	4
322	Morphological and optical anisotropy of quantum dots probed by magneto-tunneling and photoluminescence-polarization spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 170-173.	2.7	4
323	Linewidth broadening of excitonic luminescence from quantum wells in pulsed magnetic fields. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 349-352.	2.7	4
324	Electrical and optical properties of self-assembled quantum dots. Microelectronics Journal, 2002, 33, 313-318.	2.0	4

#	Article	IF	CITATIONS
325	Magneto-tunnelling spectroscopy of nitrogen clusters in Ga(AsN) alloys. IEE Proceedings: Optoelectronics, 2003, 150, 49.	0.8	4
326	Probing the effective mass anisotropy ofî"electrons in a GaAs/(AlGa)As quantum well. Physical Review B, 2003, 67, .	3.2	4
327	The unusual conduction band structure of Ga(AsN) probed by magneto-tunnelling and photocurrent spectroscopy. Journal of Physics Condensed Matter, 2004, 16, S3171-S3185.	1.8	4
328	Magnetic-field-induced Fermi-edge singularity in the tunneling current through an InAs self-assembled quantum dot. Journal of Experimental and Theoretical Physics, 2007, 105, 152-154.	0.9	4
329	Tailoring the electrical conductivity of GaAs by nitrogen incorporation. Journal of Physics Condensed Matter, 2009, 21, 174209.	1.8	4
330	Carrier injection effects on exciton dynamics in GaAs/AlAs resonant-tunneling diodes. Europhysics Letters, 2009, 85, 67010.	2.0	4
331	Nonequilibrium green function simulations of graphene-nanoribbon resonant-tunneling transistors. Japanese Journal of Applied Physics, 2014, 53, 04EN04.	1.5	4
332	Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode. Scientific Reports, 2016, 6, 32039.	3.3	4
333	Electronic processes in double barrier resonant tunneling structures investigated by optical spectroscopy. Surface Science, 1990, 229, 185-188.	1.9	3
334	Measurement of the anisotropy of the hole dispersion curves in an AlAs/GaAs/AlAs quantum well grown on a (311)A orientated substrate. Semiconductor Science and Technology, 1992, 7, 1080-1084.	2.0	3
335	An (AlGa)As/GaAs heterojunction bipolar transistor with a resonant-tunnelling collector. Semiconductor Science and Technology, 1994, 9, 1500-1503.	2.0	3
336	Reply to â€~â€~Comment on â€~Anisotropy of the confined hole states in a (311)AAlAs/GaAs/AlAs quantum-well system: Evidence for a camel's-back band structure' ''. Physical Review B, 1994, 49, 8501-8501.	3.2	3
337	Use of a narrow-gap prewell for the optical study of charge buildup and the Fermi-energy edge singularity in a double-barrier resonant-tunneling structure. Physical Review B, 1994, 50, 18469-18478.	3.2	3
338	Growth and characterization of p-type As heterostructures grown on high-index GaAs surfaces. Thin Solid Films, 1995, 267, 106-113.	1.8	3
339	Quantum chaotic transport in double barrier tunnel structures. Solid-State Electronics, 1996, 40, 7-14.	1.4	3
340	Resonant magnetotunnelling spectroscopy of a quantum loop. Solid-State Electronics, 1996, 40, 447-451.	1.4	3
341	Multi-stage annealing of defects in ion-implanted double-barrier diodes. Semiconductor Science and Technology, 1997, 12, 1273-1281.	2.0	3
342	New developments in superlattice transport: quenching of miniband conduction in high magnetic fields. Microelectronic Engineering, 1999, 47, 65-68.	2.4	3

#	Article	IF	CITATIONS
343	The transition to chaos in a wide quantum well. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 735-739.	2.7	3
344	Observation of the interaction between Landau levels of different two-dimensional subbands in GaAs in a normal magnetic field. JETP Letters, 2000, 72, 476-479.	1.4	3
345	Numerical Studies of Miniband Conduction in Quasi-One-Dimensional Superlattices. VLSI Design, 2001, 13, 45-50.	0.5	3
346	Monte Carlo simulation of miniband conduction in Landau-quantized superlattices. Physica B: Condensed Matter, 2001, 298, 329-332.	2.7	3
347	Probing the electronic properties of disordered two-dimensional systems by means of resonant tunnelling. Nanotechnology, 2001, 12, 491-495.	2.6	3
348	Spatial mapping of the electron eigenfunctions in InAs self-assembled quantum dots by magnetotunnelling. Nanotechnology, 2003, 14, 16-19.	2.6	3
349	Carrier kinetics in a high-optically efficient quantum dot structure. Semiconductor Science and Technology, 2004, 19, S282-S284.	2.0	3
350	Magnetic Field Modulated Photoreflectance Study of the Electron Effective Mass in Dilute Nitride Semiconductors. AIP Conference Proceedings, 2011, , .	0.4	3
351	Addendum to "Vibrations of a diamagnetically levitated water droplet― Physical Review E, 2012, 85, 017301.	2.1	3
352	The apparent fine-tuning of the cosmological, gravitational and fine structure constants. Physica A: Statistical Mechanics and Its Applications, 2016, 443, 355-357.	2.6	3
353	A theoretical analysis of resonant scattering of free carriers by electron-hole droplets in germanium. Journal of Physics C: Solid State Physics, 1977, 10, L531-L536.	1.5	2
354	Oscillatory intrinsic photoconductivity in semi-insulating and high-purity n-type indium phosphide. Journal of Physics C: Solid State Physics, 1979, 12, L345-L348.	1.5	2
355	Validation of magnetophonon spectroscopy as a tool for analyzing hotâ€electron effects in devices. Applied Physics Letters, 1985, 47, 387-389.	3.3	2
356	Single impurity-assisted tunnelling in sub-micron n+nâ^'n+ multilayers. Superlattices and Microstructures, 1986, 2, 385-389.	3.1	2
357	Investigation of asymmetric double barrier resonant tunneling structures based on (AlGa)As/GaAs. Journal of Crystal Growth, 1989, 95, 352-356.	1.5	2
358	High-pressure investigation of an (InAl)As-(InGa)As resonant tunnelling double-barrier structure. Semiconductor Science and Technology, 1991, 6, 449-453.	2.0	2
359	Role of contacts in mesoscopic devices. Superlattices and Microstructures, 1994, 15, 53.	3.1	2
360	A novel approach in fabrication and study of laterally quantum-confined resonant tunnelling diodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 35, 192-197.	3.5	2

#	Article	IF	CITATIONS
361	Evidence for periodic "scar―patterns in the wavefunctions of a chaotic quantum well. Surface Science, 1996, 361-362, 696-699.	1.9	2
362	The transition to chaos for hot electrons in a wide quantum well. Physica B: Condensed Matter, 1999, 272, 163-166.	2.7	2
363	In0.5Ga0.5As quantum dot lasers grown on (100) and (311)B GaAs substrates. Journal of Crystal Growth, 1999, 201-202, 1139-1142.	1.5	2
364	A phase diagram for the breakdown of the odd integer quantum Hall effect. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 124-127.	2.7	2
365	2D chaotic quantum states in superlattices. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 306-309.	2.7	2
366	Energy dependence of the quasiparticle lifetime in a 2DES. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 327-330.	2.7	2
367	Carrier hopping in InAs/AlyGa1â^'yAs quantum dot heterostructures: effects on optical and laser properties. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 452-455.	2.7	2
368	Chaos in quantum wells and analogous optical systems. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 11, 114-117.	2.7	2
369	FURTHER EVIDENCE FOR A COLLAPSE OF THE EXCHANGE-ENHANCED SPIN SPLITTING IN TWO DIMENSIONAL SYSTEMS. International Journal of Modern Physics B, 2004, 18, 3597-3602.	2.0	2
370	Electrical characterisation of (Ga,Mn,Cr)As thin films grown by molecular beam epitaxy. Journal of Crystal Growth, 2005, 278, 695-698.	1.5	2
371	Transport properties of gated sub-micron mesas incorporating InAs self-assembled quantum dots that conduct near zero bias. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 482-485.	2.7	2
372	An empire of many dimensions. Nature Materials, 2006, 5, 775-776.	27.5	2
373	On the interpretation of photoconductivity spectra of GaAs doped with deep traps. Journal of Physics C: Solid State Physics, 1978, 11, L257-L259.	1.5	1
374	Electronic properties of laterally confined n-GaAs/(AlGa)As heterostructures. Surface Science, 1990, 228, 296-300.	1.9	1
375	Photoluminescence and transport studies of wide (InGa)As/InP quantum wells in high magnetic field. Surface Science, 1990, 229, 512-514.	1.9	1
376	Sequential tunneling of holes in p-type semiconductor double-barrier heterostructures. Surface Science, 1992, 267, 409-412.	1.9	1
377	Magneto-optics of wide modulation doped quantum wells: Landau level pinning phenomena. Surface Science, 1992, 267, 493-496.	1.9	1
378	Quantum-limit behavior of magneto-tunneling in an AlGaAs/GaAs/AlGaAs double-barrier structure under high magnetic fields up to 40 T. Physica B: Condensed Matter, 1993, 184, 250-253.	2.7	1

#	Article	IF	CITATIONS
379	High magnetic field studies of the confined hole states in quantum wells grown on novel substrate orientations. Physica B: Condensed Matter, 1993, 184, 285-288.	2.7	1
380	Hierarchy of periodic orbits and associated energy level clusters in a quantum well in the regime of classical chaos. Superlattices and Microstructures, 1994, 15, 287.	3.1	1
381	Discrete electroluminescence lines in sub-micron p-i-n resonant tunnelling diodes. Superlattices and Microstructures, 1994, 16, 169.	3.1	1
382	Investigations of composite fermions in semiconductor nanostructures. Journal of Physics Condensed Matter, 1996, 8, 3019-3032.	1.8	1
383	Mesoscopic transport properties of composite fermions. Surface Science, 1996, 361-362, 59-62.	1.9	1
384	Creation and annihilation of positively and negatively charged excitions in GaAs quantum wells. Surface Science, 1996, 361-362, 447-450.	1.9	1
385	Tuning the inter-subband tunnelling and universal conductance fluctuations with an in-plane magnetic field in the â€~quantum transport regime'. Superlattices and Microstructures, 1997, 22, 307-311.	3.1	1
386	Chaos-induced orbit delocalization and complex Bloch oscillations in semiconductor superlattices. Physica B: Condensed Matter, 1999, 272, 209-212.	2.7	1
387	Quantum chaotic electron transport in superlattices. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 827-831.	2.7	1
388	Phase coherence and size effects in double quantum well mesoscopic wires. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 672-675.	2.7	1
389	Magneto-Tunnelling Spectroscopy for Spatial Mapping of Orbital Wavefunctions of the Ground and Excited Electronic States in Self-Assembled Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 715-722.	1.5	1
390	High Pressure as a Tool to Study Electron Localization. Physica Status Solidi (B): Basic Research, 2001, 223, 555-559.	1.5	1
391	Magnetotunneling spectroscopy imaging of electron wave functions in self-assembled InAs quantum dots. Physics-Uspekhi, 2001, 44, 1299-1301.	2.2	1
392	Mapping the wave functions in quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 794-801.	2.7	1
393	Magneto-tunneling spectroscopy of quantum structures. Microelectronic Engineering, 2002, 63, 109-114.	2.4	1
394	Nonlinear hole transport through a submicron-size channel. Applied Physics Letters, 2003, 82, 925-927.	3.3	1
395	RESONANT TRANSPORT IN SEMICONDUCTOR SUPERLATTICES IN A TILTED MAGNETIC FIELD. International Journal of Modern Physics B, 2004, 18, 3617-3620.	2.0	1
396	Nonequilibrium Green's function approach to resonant transport in semiconductor superlattices. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 717-721.	2.7	1

#	Article	IF	CITATIONS
397	Light-emitting diodes based on GaMnAs/GaAs heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 1002-1006.	2.7	1
398	Model for breakdown of laminar flow of a quantum Hall fluid around a charged impurity: comparison with experiment. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 205-209.	2.7	1
399	Electrical conduction properties of Ga(AsN) layers. AIP Conference Proceedings, 2005, , .	0.4	1
400	Quasiballistic transport of hot holes in GaAs submicron channels. Applied Physics Letters, 2005, 86, 042101.	3.3	1
401	One-electron spin-dependent transport in split-gate structures containing self-organized InAs quantum dots. Journal of Experimental and Theoretical Physics, 2007, 105, 145-148.	0.9	1
402	Observation of the low-temperature peak in the interlayer tunneling conductance in bilayer electron systems in the absence of the magnetic field. Journal of Experimental and Theoretical Physics, 2007, 105, 177-180.	0.9	1
403	Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability. Nature Precedings, 2010, , .	0.1	1
404	TEM of Nano-LEDs made by laser writing. Journal of Physics: Conference Series, 2011, 326, 012055.	0.4	1
405	Heavy carrier effective masses in van der Waals semiconductor Sn(SeS) revealed by high magnetic fields up to 150 T. Physical Review B, 2021, 104, .	3.2	1
406	Piezoelectric Effects on the Electron–Hole Dipole in In0.5Ga0.5As/GaAs Self-Assembled Quantum Dots. , 2001, 224, 37.		1
407	Hot electron magnetophonon spectroscopy of sub-micron semiconductors and heterostructures. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1985, 134, 17-21.	0.9	Ο
408	Investigation of a double barrier resonant tunnelling structure which incorporates an optical window layer in the top contact. Journal of Crystal Growth, 1991, 111, 1089-1094.	1.5	0
409	Electroluminescence in p-i-n double-barrier resonant tunnelling structures. Microelectronics Journal, 1994, 25, 741-746.	2.0	Ο
410	Effect of frequency dependent electron-electron interaction on resonant tunneling. Superlattices and Microstructures, 1995, 18, 239.	3.1	0
411	Cretion and annihilation of negatively charged excitons in GaAs quantum wells. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1395-1400.	0.4	0
412	Resonant magnetotunneling via quantum confined states. Physica B: Condensed Matter, 1995, 211, 423-429.	2.7	0
413	Resonant tunnelling through Dâ^' states. Surface Science, 1996, 361-362, 247-250.	1.9	0
414	Charge accumulation over a region of electrical multistability in a double barrier structure. Surface Science, 1996, 361-362, 226-230.	1.9	0

#	Article	IF	CITATIONS
415	Dissociation of indirect excitons: discontinuity and bistability in the tunnel current of 2D electron-hole layers. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 832-835.	2.7	0
416	Magnetotunnelling spectroscopy for probing the electron wave functions in self-assembled quantum dots. Physica B: Condensed Matter, 2001, 298, 254-259.	2.7	0
417	Anti-crossing of Landau levels of different two-dimensional subbands in GaAs in normal magnetic field. Physica B: Condensed Matter, 2001, 298, 359-363.	2.7	Ο
418	Emission energy and polarization tuning of InAs/GaAs self-assembled dots by growth interruption. , 0, , .		0
419	Control of the coalescence phenomena in InAs/GaAs quantum dots by using high-index planes. , 0, , .		0
420	InAs/GaAs quantum dot formation studied by magneto-photoluminescence spectroscopy. , 0, , .		0
421	<title>Effective mass anisotropy of T-electrons in GaAs/AlGaAs quantum well with InAs layer</title> . , 2002, , .		0
422	<title>Magneto-tunnelling spectroscopy of the electron states in the quantum well with embedded self assembled quantum dots: studies in magnetic field up to 28 T</title> . , 2002, , .		0
423	<title>Tunnel gaps in the two-dimensional electron system in a magnetic field</title> . , 2002, , .		0
424	<title>Escape of carriers photoexcited in self-organized InAs/GaAs quantum dots</title> . , 2002, , .		0
425	<title>Breakdown of the interger quantum Hall effect: a microscopic model with a hydronamical analogy</title> . , 2002, , .		0
426	Magnetic field induced linear Coulomb gap in tunnelling between disordered two-dimensional electron systems. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 300-303.	2.7	0
427	Miniband magneto-transport in GaAs/AlAs island superlattices. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 786-789.	2.7	0
428	Temperature dependence of the conductance in quasi-one-dimensional superlattices. Microelectronic Engineering, 2002, 63, 87-90.	2.4	0
429	Magneto-photoluminescence studies of the influence of substrate orientation on the growth of InAs/GaAs quantum dots. Journal of Crystal Growth, 2003, 251, 186-191.	1.5	0
430	Exploring the limits of superlattice miniband engineering using inverse scattering. Semiconductor Science and Technology, 2004, 19, S91-S93.	2.0	0
431	Probing the N-induced states in dilute GaAsN alloys by magneto-tunnelling. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 892-896.	2.7	0
432	Study of electron dynamics in n-type GaN using the Osaka free electron laser. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 528, 623-626.	1.6	0

#	Article	IF	CITATIONS
433	Charge buildup effects in asymmetric p-type resonant tunneling diodes. Microelectronics Journal, 2005, 36, 356-358.	2.0	0
434	The resonant tunneling of holes through double-barrier structures with InAs QDs at the center of a GaAs quantum well. Semiconductors, 2005, 39, 543-546.	0.5	0
435	Coulomb Oscillations of the Current through Spin-Nondegenerate p States of InAs Quantum Dots. JETP Letters, 2005, 82, 526.	1.4	0
436	Dilute Nitride Ga(AsN) Alloys: an Unusual Band Structure Probed by Magneto-Tunneling. AlP Conference Proceedings, 2005, , .	0.4	0
437	Observation of current resonances due to enhanced electron transport through stochastic webs in superlattices. AIP Conference Proceedings, 2005, , .	0.4	0
438	Raman scattering by LO phonon-plasmon coupled modes in heavily doped Ga(AsN). AIP Conference Proceedings, 2005, , .	0.4	0
439	Magnetotunneling spectroscopy of ring-shaped (InGa)As quantum dots: Evidence of excited states with 2pz character. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 57-60.	2.7	0
440	Anomalous quantum Hall effect induced by nearby quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 34, 148-151.	2.7	0
441	Optical study of resonant states in GaN x As1â^'x. Semiconductors, 2006, 40, 1162-1164.	0.5	Ο
442	PROBING THE SCATTERING POTENTIAL OF N-IMPURITIES IN GaAs BY MAGNETO-TUNNELING. International Journal of Modern Physics B, 2007, 21, 1600-1604.	2.0	0
443	Bose condensation of excitons in two-layer electronic systems in the absence of magnetic field. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 1120-1123.	0.6	0
444	Single-electron spin-dependent transport in split-gate structures containing self-assembled quantum dots. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 1124-1126.	0.6	0
445	Magnetic-field-induced Fermi-edge singularity in the tunnelling current through a self-assembled InAs quantum dot. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 1127-1129.	0.6	0
446	Resonant tunneling through a dilute nitride quantum well. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 198-202.	0.8	0
447	Ultrafast Acoustic Gating of Photocurrent in Nanodevices With a Quantum Well. AIP Conference Proceedings, 2011, , .	0.4	Ο
448	Electronic energy levels, wavefunctions and potential landscape of nanostructures probed by magneto-tunnelling spectroscopy. Journal of Physics: Conference Series, 2011, 334, 012010.	0.4	0
449	Theory of Resonant Tunneling through a Donor State. Japanese Journal of Applied Physics, 2012, 51, 02BJ02.	1.5	Ο
450	Nanoengineering the built-in electric field of a photonic device by interstitial-ion diffusion. Physical Review B, 2012, 85, .	3.2	0

#	Article	IF	CITATIONS
451	Monte Carlo Study on Anomalous Carrier Diffusion in Inhomogeneous Semiconductors. Journal of Physics: Conference Series, 2015, 647, 012059.	0.4	0
452	Quantum States of Self-Assembled InAs Dots Probed by Magneto-Tunneling Spectroscopy. Acta Physica Polonica A, 2001, 100, 165-173.	0.5	0
453	Breakdown of the Dissipationless Quantum Hall State: Quantised Steps and Analogies with Classical and Quantum Fluid Dynamics. Acta Physica Polonica A, 2001, 100, 205-212.	0.5	0
454	RESONANT TRANSPORT IN SEMICONDUCTOR SUPERLATTICES IN A TILTED MAGNETIC FIELD. , 2005, , .		0
455	Stochastic Carrier Dynamics in Semiconductor Superlattices. Acta Physica Polonica A, 2006, 109, 43-52.	0.5	0
456	Sharp Electroluminescence Lines Excited by Tunneling Injection Into a Large Ensemble of Quantum Dots. AIP Conference Proceedings, 2007, , .	0.4	0