
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4949210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodegradation of tetramethylammonium chloride wastewater and inorganic nitrogen removal by a mixed culture. Journal of Environmental Chemical Engineering, 2022, 10, 106931.	6.7	2
2	Enhanced production and characterization of coenzyme Q10 from Rhodobacter sphaeroides using a potential fermentation strategy. Journal of the Taiwan Institute of Chemical Engineers, 2022, , 104201.	5.3	0
3	A protein containing the DUF1471 domain regulates biofilm formation and capsule production in Klebsiella pneumoniae. Journal of Microbiology, Immunology and Infection, 2022, 55, 1246-1254.	3.1	6
4	Adsorption and Desorption Behavior of Ectoine Using Dowex® HCR-S Ion-Exchange Resin. Processes, 2021, 9, 2068.	2.8	7
5	Ectoine production with indigenous <i>Marinococcus</i> sp. MAR2 isolated from the marine environment. Preparative Biochemistry and Biotechnology, 2020, 50, 74-81.	1.9	9
6	Exploring Dual-Substrate Cultivation Strategy of 1,3-Propanediol Production Using Klebsiella pneumoniae. Applied Biochemistry and Biotechnology, 2020, 191, 346-359.	2.9	10
7	Feasibility of enhancing production of 5-hydroxymethylfurfural using deep eutectic solvents as reaction media in a high-pressure reactor. Biochemical Engineering Journal, 2020, 154, 107440.	3.6	19
8	Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource Technology, 2020, 302, 122889.	9.6	144
9	Enhancing production of lutein by a mixotrophic cultivation system using microalga Scenedesmus obliquus CWL-1. Bioresource Technology, 2019, 291, 121891.	9.6	32
10	Using the Juice of Water Lettuce (Pistia stratiotes) as Culture Medium to Increase the Cell Density and the Production of Microbial Lipid. Biotechnology and Bioprocess Engineering, 2019, 24, 395-400.	2.6	3
11	Exploring useful fermentation strategies for the production of hydroxyectoine with a halophilic strain, Halomonas salina BCRC 17875. Journal of Bioscience and Bioengineering, 2019, 128, 332-336.	2.2	11
12	Production and characterization of ectoine using a moderately halophilic strain Halomonas salina BCRC17875. Journal of Bioscience and Bioengineering, 2018, 125, 578-584.	2.2	34
13	A Novel Biodegradable and Thermosensitive Poly(Ester-Amide) Hydrogel for Cartilage Tissue Engineering. BioMed Research International, 2018, 2018, 1-12.	1.9	9
14	Construction and co-cultivation of two mutant strains harboring key precursor genes to produce prodigiosin. Journal of Bioscience and Bioengineering, 2018, 126, 783-789.	2.2	6
15	A process for simultaneously achieving phenol biodegradation and polyhydroxybutyrate accumulation using Cupriavidus taiwanesis 187. Journal of Polymer Research, 2018, 25, 1.	2.4	5
16	The Role of Yeast-Surface-Display Techniques in Creating Biocatalysts for Consolidated BioProcessing. Catalysts, 2018, 8, 94.	3.5	16
17	Producing bioethanol from pretreated-wood dust by simultaneous saccharification and co-fermentation process. Journal of the Taiwan Institute of Chemical Engineers, 2017, 79, 43-48.	5.3	24
18	Surface display of synthetic phytochelatins on Saccharomyces cerevisiae for enhanced ethanol production in heavy metal-contaminated substrates. Bioresource Technology, 2017, 245, 1455-1460.	9.6	16

#	Article	IF	CITATIONS
19	Production of bioethanol from Napier grass via simultaneous saccharification and co-fermentation in a modified bioreactor. Journal of Bioscience and Bioengineering, 2017, 124, 184-188.	2.2	16
20	Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochemical Engineering Journal, 2015, 103, 158-169.	3.6	189
21	Feasibility study on production of biodegradable polymer and wastewater treatment using Aeromonas strains for materials recycling. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 648-652.	5.3	2
22	Effect of chondroitin sulphate C on the <i>in vitro</i> and <i>in vivo</i> chondrogenesis of mesenchymal stem cells in crosslinked type II collagen scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 665-672.	2.7	38
23	Enhancing production of prodigiosin from Serratia marcescens C3 by statistical experimental design and porous carrier addition strategy. Biochemical Engineering Journal, 2013, 78, 93-100.	3.6	52
24	Feasibility study of polyhydroxyalkanote production for materials recycling using naturally occurring pollutant degraders. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 455-458.	5.3	11
25	Feasibility study on polyhydroxybutyrate production of dye-decolorizing bacteria using dye and amine-bearing cultures. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 241-245.	5.3	12
26	Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy. Journal of Bioscience and Bioengineering, 2012, 114, 198-203.	2.2	12
27	Biodegradable and Biocompatible Biomaterial, Polyhydroxybutyrate, Produced by an Indigenous Vibrio sp. BM-1 Isolated from Marine Environment. Marine Drugs, 2011, 9, 615-624.	4.6	34
28	Compare the effects of chondrogenesis by culture of human mesenchymal stem cells with various type of the chondroitin sulfate C. Journal of Bioscience and Bioengineering, 2011, 111, 226-231.	2.2	36
29	Production and characterization of ectoine by Marinococcus sp. ECT1 isolated from a high-salinity environment. Journal of Bioscience and Bioengineering, 2011, 111, 336-342.	2.2	25
30	Development of natural anti-tumor drugs by microorganisms. Journal of Bioscience and Bioengineering, 2011, 111, 501-511.	2.2	83
31	Evaluating osteochondral defect repair potential of autologous rabbit bone marrow cells on type II collagen scaffold. Cytotechnology, 2011, 63, 13-23.	1.6	50
32	High throughput study of separation of poly(3-hydroxybutyrate) from recombinant Escherichia coli XL1 blue. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 240-246.	5.3	7
33	BIOLOGICAL EFFECTS OF OLIGOSACCHARIDE CHONDROITIN SULFATE C ON HUMAN ARTICULAR CHONDROCYTES. Biomedical Engineering - Applications, Basis and Communications, 2011, 23, 245-252.	0.6	3
34	Screening and Evaluation of Polyhydroxybutyrate-Producing Strains from Indigenous Isolate Cupriavidus taiwanensis Strains. International Journal of Molecular Sciences, 2011, 12, 252-265.	4.1	98
35	Inactivation of dhaD and dhaK abolishes by-product accumulation during 1,3-propanediol production in Klebsiella pneumoniae. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 707-716.	3.0	31
36	Exploring Kinetics of Phenol Biodegradation by Cupriavidus taiwanesis 187. International Journal of Molecular Sciences, 2010, 11, 5065-5076.	4.1	9

#	Article	IF	CITATIONS
37	Production and Characterization of Fengycin by Indigenous Bacillus subtilis F29-3 Originating from a Potato Farm. International Journal of Molecular Sciences, 2010, 11, 4526-4538.	4.1	51
38	Optimizing acidic methanolysis of poly(3â€hydroxyalkanoates) in gas chromatography analysis. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 487-494.	1.5	18
39	Enhanced di-rhamnolipid production with an indigenous isolate Pseudomonas aeruginosa J16. Process Biochemistry, 2008, 43, 769-774.	3.7	39
40	Fermentation strategy for the production of poly(3-hydroxyhexanoate) by Aeromonas sp. KC014. Korean Journal of Chemical Engineering, 2008, 25, 1422-1426.	2.7	11
41	Enhanced Production of Surfactin from Bacillussubtilis by Addition of Solid Carriers. Biotechnology Progress, 2008, 21, 1329-1334.	2.6	147
42	Production of poly-β-hydroxybutyrate (PHB) by Vibrio spp. isolated from marine environment. Journal of Biotechnology, 2007, 132, 259-263.	3.8	88
43	Solubility of polyhydroxyalkanoates by experiment and thermodynamic correlations. AICHE Journal, 2007, 53, 2704-2714.	3.6	62
44	Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochemistry, 2007, 42, 40-45.	3.7	112
45	Undecylprodigiosin selectively induces apoptosis in human breast carcinoma cells independent of p53. Toxicology and Applied Pharmacology, 2007, 225, 318-328.	2.8	42
46	Brachybacterium phenoliresistens sp. nov., isolated from oil-contaminated coastal sand. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 2674-2679.	1.7	38
47	Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochemistry, 2006, 41, 1799-1805.	3.7	119
48	Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochemical Engineering Journal, 2005, 27, 146-154.	3.6	238
49	Characterization of floating activity of indigenous diesel-assimilating bacterial isolates. Journal of Bioscience and Bioengineering, 2005, 99, 466-472.	2.2	37
50	Enhanced production of prodigiosin-like pigment from Serratia marcescens SMΔR by medium improvement and oil-supplementation strategies. Journal of Bioscience and Bioengineering, 2005, 99, 616-622.	2.2	93
51	Enhanced undecylprodigiosin production from Serratia marcescens SS-1 by medium formulation and amino-acid supplementation. Journal of Bioscience and Bioengineering, 2005, 100, 466-471.	2.2	55
52	Optimizing Iron Supplement Strategies for Enhanced Surfactin Production with Bacillus subtilis. Biotechnology Progress, 2004, 20, 979-983.	2.6	69
53	Biosurfactant production by Serratia marcescens SS-1 and its isogenic strain SMΔR defective in SpnR, a quorum-sensing LuxR family protein. Biotechnology Letters, 2004, 26, 799-802.	2.2	33
54	Identification of induced acidification in iron-enriched cultures of Bacillus subtilis during biosurfactant fermentation. Journal of Bioscience and Bioengineering, 2003, 96, 174-178.	2.2	66

#	Article	IF	CITATIONS
55	Mn2 + improves surfactin production by Bacillus subtilis. Biotechnology Letters, 2002, 24, 479-482.	2.2	75
56	Enhancement of surfactin production in iron-enriched media by bacillus subtilis ATCC 21332. Enzyme and Microbial Technology, 1998, 22, 724-728.	3.2	104