Nian Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4949168/publications.pdf Version: 2024-02-01

NIAN CHENC

#	Article	IF	CITATIONS
1	Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12080-12087.	10.3	210
2	Stable Organic–Inorganic Perovskite Solar Cells without Hole onductor Layer Achieved via Cell Structure Design and Contact Engineering. Advanced Functional Materials, 2016, 26, 4866-4873.	14.9	84
3	W-doped TiO2 mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes. Journal of Power Sources, 2017, 342, 489-494.	7.8	71
4	One-pot stirring-free synthesis of silver nanowires with tunable lengths and diameters via a Fe ³⁺ & Cl ^{â^'} co-mediated polyol method and their application as transparent conductive films. Nanoscale, 2016, 8, 18121-18133.	5.6	66
5	Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells. Journal of Power Sources, 2016, 332, 24-29.	7.8	58
6	Enhanced performance in hole transport material free perovskite solar cells via morphology control of PbI2 film by solvent treatment. Journal of Power Sources, 2016, 319, 111-115.	7.8	46
7	Application of mesoporous SiO2 layer as an insulating layer in high performance hole transport material free CH3NH3PbI3 perovskite solar cells. Journal of Power Sources, 2016, 321, 71-75.	7.8	46
8	Low-cost and Efficient Hole-Transport-Material-free perovskite solar cells employing controllable electron-transport layer based on P25 nanoparticles. Electrochimica Acta, 2016, 213, 83-88.	5.2	33
9	Enhance the performance and stability of methylammonium lead iodide perovskite solar cells with guanidinium thiocyanate additive. Current Applied Physics, 2019, 19, 25-30.	2.4	32
10	Cu2ZnSnS4 as an efficient hole transporting material for low temperature paintable carbon electrode based perovskite solar cells. Organic Electronics, 2020, 76, 105455.	2.6	30
11	Boost the performance of inverted perovskite solar cells with PEDOT:PSS/Graphene quantum dots composite hole transporting layer. Organic Electronics, 2020, 78, 105575.	2.6	28
12	A composite nanostructured electron-transport layer for stable hole-conductor free perovskite solar cells: design and characterization. Nanoscale, 2016, 8, 5847-5851.	5.6	25
13	Ligand modification of Cu ₂ ZnSnS ₄ nanoparticles boosts the performance of low temperature paintable carbon electrode based perovskite solar cells to 17.71%. Journal of Materials Chemistry A, 2020, 8, 12080-12088.	10.3	25
14	Probing effects of molecular conformation on the electronic and charge transport properties in two- and three-dimensional small molecule hole-transporting materials: a theoretical investigation. Physical Chemistry Chemical Physics, 2019, 21, 15206-15214.	2.8	24
15	Structural modulation enables magneto-dielectric effect and enhanced photoactivity in ferroelectric bismuth iron niobate pyrochlore. Journal of Materials Chemistry C, 2019, 7, 1263-1272.	5.5	23
16	Post-annealing treatment of a-GeSe thin films for photovoltaic application. Solar Energy, 2020, 199, 837-843.	6.1	23
17	Efficient and stable MAPbI3 perovskite solar cells achieved via chlorobenzene/perylene mixed anti-solvent. Solar Energy, 2021, 220, 251-257.	6.1	22
18	A simulation study of valence band offset engineering at the perovskite/Cu2ZnSn(Se1-xSx)4 interface for enhanced performance. Materials Science in Semiconductor Processing, 2019, 90, 59-64.	4.0	17

NIAN CHENG

#	Article	IF	CITATIONS
19	Efficient Electron Transport Scaffold Made up of Submicron TiO ₂ Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells. ACS Applied Energy Materials, 0, , .	5.1	13
20	Combined solvent and vapor treatment to prepare high quality perovskite films under high relative humidity. Electrochimica Acta, 2017, 246, 990-996.	5.2	11
21	CZTS nanoparticles as an effective hole-transport layer for Sb2Se3 thin-film solar cells. Solar Energy, 2021, 226, 154-160.	6.1	10
22	High performance hole transport material free perovskite solar cells from a low pure PbI2 source using a facile solid-gas reaction process. Organic Electronics, 2018, 53, 221-226.	2.6	9
23	High performance inverted perovskite solar cells using PEDOT:PSS/KCl hybrid hole transporting layer. Organic Electronics, 2021, 98, 106298.	2.6	9
24	Scalable one-step heating up synthesis of Cu2ZnSnS4 nanocrystals hole conducting materials for carbon electrode based perovskite solar cells. Solar Energy, 2021, 224, 51-57.	6.1	7
25	Inverted planar perovskite solar cells with efficient and stability via optimized cathode-interfacial layer. Solar Energy, 2020, 207, 1165-1171.	6.1	5
26	SnO2 electron transport layer modified with gentian violet for perovskite solar cells with enhanced performance. Organic Electronics, 2022, 108, 106600.	2.6	5