Benjamin Erable

List of Publications by Citations

Source: https://exaly.com/author-pdf/4948938/benjamin-erable-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,088 78 27 55 h-index g-index citations papers 81 3,627 8.4 5.7 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
78	Microbial fuel cells: From fundamentals to applications. A review. <i>Journal of Power Sources</i> , 2017 , 356, 225-244	8.9	902
77	Microbial catalysis of the oxygen reduction reaction for microbial fuel cells: a review. <i>ChemSusChem</i> , 2012 , 5, 975-87	8.3	164
76	Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction. <i>Energy and Environmental Science</i> , 2015 , 8, 3731-3744	35.4	132
75	Stainless steel is a promising electrode material for anodes of microbial fuel cells. <i>Energy and Environmental Science</i> , 2012 , 5, 9645	35.4	128
74	Stainless steel foam increases the current produced by microbial bioanodes in bioelectrochemical systems. <i>Energy and Environmental Science</i> , 2014 , 7, 1633-1637	35.4	106
73	Application of electro-active biofilms. <i>Biofouling</i> , 2010 , 26, 57-71	3.3	100
72	Marine aerobic biofilm as biocathode catalyst. <i>Bioelectrochemistry</i> , 2010 , 78, 51-6	5.6	95
71	Increased power from a two-chamber microbial fuel cell with a low-pH air-cathode compartment. <i>Electrochemistry Communications</i> , 2009 , 11, 619-622	5.1	87
70	Nitric acid activation of graphite granules to increase the performance of the non-catalyzed oxygen reduction reaction (ORR) for MFC applications. <i>Electrochemistry Communications</i> , 2009 , 11, 1547-1549	5.1	73
69	From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater. <i>Biofouling</i> , 2011 , 27, 319-26	3.3	70
68	Electroanalysis of microbial anodes for bioelectrochemical systems: basics, progress and perspectives. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 16349-66	3.6	64
67	Electrochemical reduction of CO2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes. <i>Electrochemistry Communications</i> , 2013 , 28, 27-30	5.1	63
66	Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC). <i>Electrochemistry Communications</i> , 2010 , 12, 183-186	5.1	56
65	Ultra microelectrodes increase the current density provided by electroactive biofilms by improving their electron transport ability. <i>Energy and Environmental Science</i> , 2012 , 5, 5287-5296	35.4	50
64	Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions. <i>Bioelectrochemistry</i> , 2016 , 108, 1-7	5.6	46
63	Marine floating microbial fuel cell involving aerobic biofilm on stainless steel cathodes. <i>Bioresource Technology</i> , 2013 , 142, 510-6	11	45
62	First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm. <i>Bioresource Technology</i> , 2009 , 100, 3302-7	11	45

(2017-2016)

61	Two-dimensional carbon cloth and three-dimensional carbon felt perform similarly to form bioanode fed with food waste. <i>Electrochemistry Communications</i> , 2016 , 66, 38-41	5.1	44	
60	Towards an engineering-oriented strategy for building microbial anodes for microbial fuel cells. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 13332-43	3.6	44	
59	Sampling natural biofilms: a new route to build efficient microbial anodes. <i>Environmental Science & Environmental & E</i>	10.3	42	
58	Oxygen-reducing biocathodes designed with pure cultures of microbial strains isolated from seawater biofilms. <i>International Biodeterioration and Biodegradation</i> , 2015 , 103, 16-22	4.8	39	
57	Protons accumulation during anodic phase turned to advantage for oxygen reduction during cathodic phase in reversible bioelectrodes. <i>Bioresource Technology</i> , 2014 , 173, 224-230	11	38	
56	The current provided by oxygen-reducing microbial cathodes is related to the composition of their bacterial community. <i>Bioelectrochemistry</i> , 2015 , 102, 42-9	5.6	35	
55	Influence of Hydrogen Electron Donor, Alkaline pH, and High Nitrate Concentrations on Microbial Denitrification: A Review. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	33	
54	Single medium microbial fuel cell: Stainless steel and graphite electrode materials select bacterial communities resulting in opposite electrocatalytic activities. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 26059-26067	6.7	31	
53	Comparison of synthetic medium and wastewater used as dilution medium to design scalable microbial anodes: Application to food waste treatment. <i>Bioresource Technology</i> , 2015 , 185, 106-15	11	30	
52	Biotransformation of halogenated compounds by lyophilized cells of Rhodococcus erythropolis in a continuous solidgas biofilter. <i>Process Biochemistry</i> , 2005 , 40, 45-51	4.8	28	
51	Influence of the electrode size on microbial anode performance. <i>Chemical Engineering Journal</i> , 2017 , 327, 218-227	14.7	26	
50	Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review. <i>Bioresource Technology</i> , 2019 , 289, 121641	11	26	
49	Forming microbial anodes under delayed polarisation modifies the electron transfer network and decreases the polarisation time required. <i>Bioresource Technology</i> , 2012 , 114, 334-41	11	25	
48	Iron-Nicarbazin derived platinum group metal-free electrocatalyst in scalable-size air-breathing cathodes for microbial fuel cells. <i>Electrochimica Acta</i> , 2018 , 277, 127-135	6.7	23	
47	Microbial electrochemical snorkels (MESs): A budding technology for multiple applications. A mini review. <i>Electrochemistry Communications</i> , 2019 , 104, 106473	5.1	22	
46	Haloalkane hydrolysis by Rhodococcus erythropolis cells: comparison of conventional aqueous phase dehalogenation and nonconventional gas phase dehalogenation. <i>Biotechnology and Bioengineering</i> , 2004 , 86, 47-54	4.9	21	
45	MICROBIAL FUEL CELLS - AN OPTION FOR WASTEWATER TREATMENT. <i>Environmental Engineering</i> and Management Journal, 2010 , 9, 1069-1087	0.6	20	
44	Different methods used to form oxygen reducing biocathodes lead to different biomass quantities, bacterial communities, and electrochemical kinetics. <i>Bioelectrochemistry</i> , 2017 , 116, 24-32	5.6	18	

43	Catalysis of the hydrogen evolution reaction by hydrogen carbonate to decrease the voltage of microbial electrolysis cell fed with domestic wastewater. <i>Electrochimica Acta</i> , 2018 , 275, 32-39	6.7	18
42	Biocathodes reducing oxygen at high potential select biofilms dominated by Ectothiorhodospiraceae populations harboring a specific association of genes. <i>Bioresource Technology</i> , 2016 , 214, 55-62	11	17
41	Reactivity of nitrate and organic acids at the concreteBitumen interface of a nuclear waste repository cell. <i>Nuclear Engineering and Design</i> , 2014 , 268, 51-57	1.8	16
40	Multi-system Nernst-Michaelis-Menten model applied to bioanodes formed from sewage sludge. <i>Bioresource Technology</i> , 2015 , 195, 162-9	11	16
39	Multiple electron transfer systems in oxygen reducing biocathodes revealed by different conditions of aeration/agitation. <i>Bioelectrochemistry</i> , 2016 , 110, 46-51	5.6	15
38	Halomonas desiderata as a bacterial model to predict the possible biological nitrate reduction in concrete cells of nuclear waste disposals. <i>Journal of Environmental Management</i> , 2014 , 132, 32-41	7.9	15
37	Bioremediation of halogenated compounds: comparison of dehalogenating bacteria and improvement of catalyst stability. <i>Chemosphere</i> , 2006 , 65, 1146-52	8.4	15
36	Mechanisms of cementitious material deterioration in biogas digester. <i>Science of the Total Environment</i> , 2016 , 571, 892-901	10.2	15
35	Nonconventional hydrolytic dehalogenation of 1-chlorobutane by dehydrated bacteria in a continuous solid-gas biofilter. <i>Biotechnology and Bioengineering</i> , 2005 , 91, 304-13	4.9	14
34	The open circuit potential of Geobacter sulfurreducens bioanodes depends on the electrochemical adaptation of the strain. <i>Electrochemistry Communications</i> , 2013 , 33, 35-38	5.1	12
33	Coupled oxidationEeduction of butanolElexanal by resting Rhodococcus erythropolis NCIMB 13064 cells in liquid and gas phases. <i>Enzyme and Microbial Technology</i> , 2008 , 43, 423-430	3.8	12
32	Cementitious materials in biogas systems: Biodeterioration mechanisms and kinetics in CEM I and CAC based materials. <i>Cement and Concrete Research</i> , 2019 , 124, 105815	10.3	11
31	Increasing the temperature is a relevant strategy to form microbial anodes intended to work at room temperature. <i>Electrochimica Acta</i> , 2017 , 258, 134-142	6.7	9
30	Bacterial Biofilm Characterization and Microscopic Evaluation of the Antibacterial Properties of a Photocatalytic Coating Protecting Building Material. <i>Coatings</i> , 2018 , 8, 93	2.9	9
29	Biodeterioration of concrete in agricultural, agro-food and biogas plants: state of the art and challenges. <i>RILEM Technical Letters</i> , 2, 83-89		9
28	Microbial anodes: What actually occurs inside pores?. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 4484-4495	6.7	9
27	Benchmarking of Industrial Synthetic Graphite Grades, Carbon Felt, and Carbon Cloth as Cost-Efficient Bioanode Materials for Domestic Wastewater Fed Microbial Electrolysis Cells. <i>Frontiers in Energy Research</i> , 2019 , 7,	3.8	8
26	Use of a continuous-flow bioreactor to evaluate nitrate reduction rate of Halomonas desiderata in cementitious environment relevant to nuclear waste deep repository. <i>Biochemical Engineering Journal</i> , 2017 , 125, 161-170	4.2	7

(2020-2015)

Surface and bacterial reduction of nitrate at alkaline pH: Conditions comparable to a nuclear waste repository. <i>International Biodeterioration and Biodegradation</i> , 2015 , 101, 12-22	4.8	7
Sustainable Approach for Tannery Wastewater Treatment: Bioelectricity Generation in Bioelectrochemical Systems. <i>Arabian Journal for Science and Engineering</i> , 2019 , 44, 10057-10066	2.5	7
Microfluidic Microbial Bioelectrochemical Systems: An Integrated Investigation Platform for a More Fundamental Understanding of Electroactive Bacterial Biofilms. <i>Microorganisms</i> , 2020 , 8,	4.9	7
Nitrate and nitrite reduction at high pH in a cementitious environment by a microbial microcosm. <i>International Biodeterioration and Biodegradation</i> , 2018 , 134, 93-102	4.8	7
Understanding the cumulative effects of salinity, temperature and inoculation size for the design of optimal halothermotolerant bioanodes from hypersaline sediments. <i>Bioelectrochemistry</i> , 2019 , 129, 179-188	5.6	6
Nitrate and nitrite reduction activity of activated sludge microcosm in a highly alkaline environment with solid cementitious material. <i>International Biodeterioration and Biodegradation</i> , 2020 , 151, 104971	4.8	5
Non-conventional gas phase remediation of volatile halogenated compounds by dehydrated bacteria. <i>Journal of Environmental Management</i> , 2009 , 90, 2841-4	7.9	5
Low-Cost Electrode Modification to Upgrade the Bioelectrocatalytic Oxidation of Tannery Wastewater Using Acclimated Activated Sludge. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 2259	2.6	4
Coupled iron-microbial catalysis for CO2 hydrogenation with multispecies microbial communities. <i>Chemical Engineering Journal</i> , 2018 , 346, 307-316	14.7	4
Nitrate and nitrite bacterial reduction at alkaline pH and high nitrate concentrations, comparison of acetate versus dihydrogen as electron donors. <i>Journal of Environmental Management</i> , 2021 , 280, 111859	9 7.9	4
Biodeterioration kinetics and microbial community organization on surface of cementitious materials exposed to anaerobic digestion conditions. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105334	6.8	4
Exploring natural vs. synthetic minimal media to boost current generation with electrochemically-active marine bioanodes. <i>Journal of Environmental Chemical Engineering</i> , 2016 , 4, 236	2 ⁶ 2369	₉ 3
Industrially scalable surface treatments to enhance the current density output from graphite bioanodes fueled by real domestic wastewater. <i>IScience</i> , 2021 , 24, 102162	6.1	3
Oxygen-reducing bidirectional microbial electrodes designed in real domestic wastewater. <i>Bioresource Technology</i> , 2021 , 326, 124663	11	3
How Comparable are Microbial Electrochemical Systems around the Globe? An Electrochemical and Microbiological Cross-Laboratory Study. <i>ChemSusChem</i> , 2021 , 14, 2313-2330	8.3	3
Evaluation of microbial proliferation on cementitious materials exposed to biogas systems. <i>Environmental Technology (United Kingdom)</i> , 2020 , 41, 2439-2449	2.6	3
Design of 3D microbial anodes for microbial electrolysis cells (MEC) fuelled by domestic wastewater. Part I: Multiphysics modelling. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 1054	1 5 .8	3
Adaptation of neutrophilic Paracoccus denitrificans to denitrification at highly alkaline pH. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 22112-22119	5.1	2
	repository. International Biodeterioration and Biodegradation, 2015, 101, 12-22 Sustainable Approach for Tannery Wastewater Treatment: Bioelectricity Generation in Bioelectrochemical Systems. Arabian Journal for Science and Engineering, 2019, 44, 10057-10066 Microfluidic Microbial Bioelectrochemical Systems: An Integrated Investigation Platform for a More Fundamental Understanding of Electroactive Bacterial Biofilms. Microorganisms, 2020, 8, Nitrate and nitrite reduction at high pH in a cementitious environment by a microbial microcosm. International Biodeterioration and Biodegradation, 2018, 134, 93-102 Understanding the cumulative effects of salinity, temperature and inoculation size for the design of optimal halothermotolerant bioanodes from hypersaline sediments. Bioelectrochemistry, 2019, 129, 179-188 Nitrate and nitrite reduction activity of activated sludge microcosm in a highly alkaline environment with solid cementitious material. International Biodeterioration and Biodegradation, 2020, 151, 104971 Non-conventional gas phase remediation of volatile halogenated compounds by dehydrated bacteria. Journal of Environmental Management, 2009, 90, 2841-4 Low-Cost Electrode Modification to Upgrade the Bioelectrocatalytic Oxidation of Tannery Wastewater Using Acclimated Activated Sludge. Applied Sciences (Switzerland), 2019, 9, 2259 Coupled iron-microbial catalysis for CO2 hydrogenation with multispecies microbial communities. Chemical Engineering Journal, 2018, 346, 307-316 Nitrate and nitrite bacterial reduction at alkaline pH and high nitrate concentrations, comparison of acetate versus dihydrogen as electron donors. Journal of Environmental Management, 2021, 280, 11185 Biodeterioration kinetics and microbial community organization on surface of cementitious materials exposed to anaerobic digestion conditions. Journal of Environmental Chemical Engineering, 2016, 4, 236 Industrially scalable surface treatments to enhance the current density output from graphite bioanodes fueled by real domestic wast	sustainable Approach for Tannery Wastewater Treatment: Bioelectricity Generation in Bioelectrochemical Systems. <i>Arabian Journal for Science and Engineering</i> , 2019, 44, 10057-10066 2-5 Microfluidic Microbial Bioelectrochemical Systems: An Integrated Investigation Platform for a More Fundamental Understanding of Electroactive Bacterial Biofilms. <i>Microorganisms</i> , 2020, 8, 49 Nitrate and nitrite reduction at high pH in a cementitious environment by a microbial microcosm. <i>International Biodeterioration and Biodegradation</i> , 2018, 134, 93-102 Understanding the cumulative effects of salinity, temperature and inoculation size for the design of optimal halothermotolerant bioanodes from hypersaline sediments. <i>Bioelectrochemistry</i> , 2019, 159-188 Nitrate and nitrite reduction activity of activated sludge microcosm in a highly alkaline environment with solid cementitious material. <i>International Biodeterioration and Biodegradation</i> , 2020, 151, 104971 Non-conventional gas phase remediation of volatile halogenated compounds by dehydrated bacteria. <i>Journal of Environmental Management</i> , 2009, 90, 2841-4 Low-Cost Electrode Modification to Upgrade the Bioelectrocatalytic Oxidation of Tannery Wastewater Using Acclimated Activated Sludge. <i>Applied Sciences (Switzerland)</i> , 2019, 9, 2259 Coupled iron-microbial catalysis for CO2 hydrogenation with multispecies microbial communities. Chemical Engineering Journal, 2018, 346, 307-316 Nitrate and nitrite bacterial reduction at alkaline pH and high nitrate concentrations, comparison of acetate versus dihydrogen as electron donors. <i>Journal of Environmental Management</i> , 2021, 280, 111859 ⁷⁻⁹ Biodeterioration kinetics and microbial community organization on surface of cementitious materials exposed to anaerobic digestion conditions. <i>Journal of Environmental Chemical Engineering</i> , 2016, 4, 2362236. Exploring natural vs. synthetic minimal media to boost current generation with electrochemically active marine bioanodes. <i>Journal of Environmental Chemical Engineering</i> , 2016, 4,

7	Communications, 2021 , 123, 106930	5.1	2
6	How bacteria use electric fields to reach surfaces. <i>Biofilm</i> , 2021 , 3, 100048	5.9	2
5	Allochthonous and Autochthonous Halothermotolerant Bioanodes From Hypersaline Sediment and Textile Wastewater: A Promising Microbial Electrochemical Process for Energy Recovery Coupled With Real Textile Wastewater Treatment. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 609446		1
4	Insights into the local interaction mechanisms between fermenting broken maize and various binder materials for anaerobic digester structures. <i>Journal of Environmental Management</i> , 2021 , 300, 113735	7.9	1

3 Biological and Microbial Fuel Cells **2021**,

Whole Cell (Microbial) Electrocatalysis of the Oxygen Reduction Reaction (ORR) **2018**, 920-929

Oxygen supply management to intensify wastewater treatment by a microbial electrochemical snorkel. *Electrochimica Acta*, **2021**, 394, 139103