
Bruce Alan McDonald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4948596/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monitoring of Brazilian wheat blast field populations reveals resistance to QoI, DMI, and SDHI fungicides. Plant Pathology, 2022, 71, 304-321.	1.2	12
2	Asexual reproductive potential trumps virulence as a predictor of competitive ability in mixed infections. Environmental Microbiology, 2022, , .	1.8	6
3	How large and diverse are field populations of fungal plant pathogens? The case of <i>Zymoseptoria tritici</i> . Evolutionary Applications, 2022, 15, 1360-1373.	1.5	14
4	Widespread distribution of resistance to triazole fungicides in Brazilian populations of the wheat blast pathogen. Plant Pathology, 2021, 70, 436-448.	1.2	23
5	Maintenance of variation in virulence and reproduction in populations of an agricultural plant pathogen. Evolutionary Applications, 2021, 14, 335-347.	1.5	18
6	Mixed infections alter transmission potential in a fungal plant pathogen. Environmental Microbiology, 2021, 23, 2315-2330.	1.8	25
7	Genome-wide association study for septoria tritici blotch resistance reveals the occurrence and distribution of Stb6 in a historic Swiss landrace collection. Euphytica, 2021, 217, 1.	0.6	3
8	Population genomics of transposable element activation in the highly repressive genome of an agricultural pathogen. Microbial Genomics, 2021, 7, .	1.0	8
9	A population-level invasion by transposable elements triggers genome expansion in a fungal pathogen. ELife, 2021, 10, .	2.8	49
10	Mapping the adaptive landscape of a major agricultural pathogen reveals evolutionary constraints across heterogeneous environments. ISME Journal, 2021, 15, 1402-1419.	4.4	25
11	Tolerance to oxidative stress is associated with both oxidative stress response and inherent growth in a fungal wheat pathogen. Genetics, 2021, 217, .	1.2	11
12	Chromatin Dynamics Contribute to the Spatiotemporal Expression Pattern of Virulence Genes in a Fungal Plant Pathogen. MBio, 2020, 11, .	1.8	29
13	The Genetic Architecture of Emerging Fungicide Resistance in Populations of a Global Wheat Pathogen. Genome Biology and Evolution, 2020, 12, 2231-2244.	1.1	29
14	A polyetic modelling framework for plant disease emergence. Plant Pathology, 2020, 69, 1630-1643.	1.2	9
15	<i>SnToxA</i> , <i>SnTox1</i> , and <i>SnTox3</i> originated in <i>Parastagonospora nodorum</i> in the Fertile Crescent. Plant Pathology, 2020, 69, 1482-1491.	1.2	16
16	A 19-isolate reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici. BMC Biology, 2020, 18, 12.	1.7	95
17	A tradeoff between tolerance and resistance to a major fungal pathogen in elite wheat cultivars. New Phytologist, 2020, 226, 879-890.	3.5	20
18	Natural selection drives population divergence for local adaptation in a wheat pathogen. Fungal Genetics and Biology, 2020, 141, 103398.	0.9	16

2

#	Article	IF	CITATIONS
19	Morphological changes in response to environmental stresses in the fungal plant pathogen Zymoseptoria tritici. Scientific Reports, 2019, 9, 9642.	1.6	73
20	The emergence of the multiâ€species NIP1 effector in <i>Rhynchosporium</i> was accompanied by high rates of gene duplications and losses. Environmental Microbiology, 2019, 21, 2677-2695.	1.8	19
21	Wheat blast: from its origins in South America to its emergence as a global threat. Molecular Plant Pathology, 2019, 20, 155-172.	2.0	88
22	Precision Phenotyping Reveals Novel Loci for Quantitative Resistance to Septoria Tritici Blotch. Plant Phenomics, 2019, 2019, 3285904.	2.5	37
23	Evidence for local adaptation and pleiotropic effects associated with melanization in a plant pathogenic fungus. Fungal Genetics and Biology, 2018, 115, 33-40.	0.9	17
24	When resistance gene pyramids are not durable—the role of pathogen diversity. Molecular Plant Pathology, 2018, 19, 521-524.	2.0	53
25	Evolutionary analyses of the avirulence effector AvrStb6 in global populations of <i>Zymoseptoria tritici</i> identify candidate amino acids involved in recognition. Molecular Plant Pathology, 2018, 19, 1836-1846.	2.0	30
26	Genomeâ€wide evidence for divergent selection between populations of a major agricultural pathogen. Molecular Ecology, 2018, 27, 2725-2741.	2.0	74
27	A fungal avirulence factor encoded in a highly plastic genomic region triggers partial resistance to septoria tritici blotch. New Phytologist, 2018, 219, 1048-1061.	3.5	103
28	Quantitative trait locus mapping reveals complex genetic architecture of quantitative virulence in the wheat pathogen <i>Zymoseptoria tritici</i> . Molecular Plant Pathology, 2018, 19, 201-216.	2.0	76
29	Comparative Transcriptomics Reveals How Wheat Responds to Infection by <i>Zymoseptoria tritici</i> . Molecular Plant-Microbe Interactions, 2018, 31, 420-431.	1.4	37
30	Ranking Quantitative Resistance to Septoria tritici Blotch in Elite Wheat Cultivars Using Automated Image Analysis. Phytopathology, 2018, 108, 568-581.	1.1	88
31	Pan-Parastagonospora Comparative Genome Analysis—Effector Prediction and Genome Evolution. Genome Biology and Evolution, 2018, 10, 2443-2457.	1.1	43
32	Transposable element insertions shape gene regulation and melanin production in a fungal pathogen of wheat. BMC Biology, 2018, 16, 78.	1.7	70
33	Widespread signatures of selection for secreted peptidases in a fungal plant pathogen. BMC Evolutionary Biology, 2018, 18, 7.	3.2	27
34	Genome-Wide Detection of Genes Under Positive Selection in Worldwide Populations of the Barley Scald Pathogen. Genome Biology and Evolution, 2018, 10, 1315-1332.	1.1	28
35	Hyperspectral Canopy Sensing of Wheat Septoria Tritici Blotch Disease. Frontiers in Plant Science, 2018, 9, 1195.	1.7	61
36	Meiosis Leads to Pervasive Copy-Number Variation and Distorted Inheritance of Accessory Chromosomes of the Wheat Pathogen Zymoseptoria tritici. Genome Biology and Evolution, 2018, 10, 1416-1429.	1.1	26

#	Article	IF	CITATIONS
37	A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements. ISME Journal, 2017, 11, 1189-1204.	4.4	166
38	Comparative Transcriptome Analyses in <i>Zymoseptoria tritici</i> Reveal Significant Differences in Gene Expression Among Strains During Plant Infection. Molecular Plant-Microbe Interactions, 2017, 30, 231-244.	1.4	129
39	A small secreted protein in <i>Zymoseptoria tritici</i> is responsible for avirulence on wheat cultivars carrying the <i>Stb6</i> resistance gene. New Phytologist, 2017, 214, 619-631.	3.5	218
40	Reversing resistance: different routes and common themes across pathogens. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171619.	1.2	22
41	The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems. Molecular Ecology, 2017, 26, 2027-2040.	2.0	73
42	Mutations in the <i>CYP51</i> gene reduce DMI sensitivity in <i>Parastagonospora nodorum</i> populations in Europe and China. Pest Management Science, 2017, 73, 1503-1510.	1.7	42
43	<i>Pyricularia graminis-tritici</i> , a new <i>Pyricularia</i> species causing wheat blast. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2016, 37, 199-216.	1.6	66
44	Comparative transcriptomic analyses of <scp><i>Z</i></scp> <i>ymoseptoria tritici</i> strains show complex lifestyle transitions and intraspecific variability in transcription profiles. Molecular Plant Pathology, 2016, 17, 845-859.	2.0	82
45	Genome-Wide Association Study Identifies Novel Candidate Genes for Aggressiveness, Deoxynivalenol Production, and Azole Sensitivity in Natural Field Populations of <i>Fusarium graminearum</i> . Molecular Plant-Microbe Interactions, 2016, 29, 417-430.	1.4	89
46	How Knowledge of Pathogen Population Biology Informs Management of Septoria Tritici Blotch. Phytopathology, 2016, 106, 948-955.	1.1	112
47	A Global Analysis of <i>CYP51</i> Diversity and Azole Sensitivity in <i>Rhynchosporium commune</i> . Phytopathology, 2016, 106, 355-361.	1.1	35
48	Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biology, 2016, 14, 84.	1.7	355
49	An Improved Method for Measuring Quantitative Resistance to the Wheat Pathogen <i>Zymoseptoria tritici</i> Using High-Throughput Automated Image Analysis. Phytopathology, 2016, 106, 782-788.	1.1	90
50	Validation of Genome-Wide Association Studies as a Tool to Identify Virulence Factors in <i>Parastagonospora nodorum</i> . Phytopathology, 2016, 106, 1177-1185.	1.1	74
51	Linear Correlation Analysis of <i>Zymoseptoria tritici</i> Aggressiveness with In Vitro Growth Rate. Phytopathology, 2016, 106, 1255-1261.	1.1	14
52	Multilocus resistance evolution to azole fungicides in fungal plant pathogen populations. Molecular Ecology, 2016, 25, 6124-6142.	2.0	60
53	Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160026.	1.8	240
54	Population Genomics of Fungal and Oomycete Pathogens. Annual Review of Phytopathology, 2016, 54, 323-346.	3.5	96

#	Article	IF	CITATIONS
55	QTL mapping of temperature sensitivity reveals candidate genes for thermal adaptation and growth morphology in the plant pathogenic fungus Zymoseptoria tritici. Heredity, 2016, 116, 384-394.	1.2	68
56	Genome-wide analysis of Fusarium graminearum field populations reveals hotspots of recombination. BMC Genomics, 2015, 16, 996.	1.2	65
57	The Urochloa Foliar Blight and Collar Rot Pathogen <i>Rhizoctonia solani</i> AG-1 IA Emerged in South America Via a Host Shift from Rice. Phytopathology, 2015, 105, 1475-1486.	1.1	16
58	How can research on pathogen population biology suggest disease management strategies? The example of barley scald (<i>Rhynchosporium commune</i>). Plant Pathology, 2015, 64, 1005-1013.	1.2	51
59	Significant variation in sensitivity to a <scp>DMI</scp> fungicide in field populations of <i><scp>F</scp>usarium graminearum</i> . Plant Pathology, 2015, 64, 664-670.	1.2	48
60	Resistance to QoI Fungicides Is Widespread in Brazilian Populations of the Wheat Blast Pathogen <i>Magnaporthe oryzae</i> . Phytopathology, 2015, 105, 284-294.	1.1	121
61	QTL mapping of fungicide sensitivity reveals novel genes and pleiotropy with melanization in the pathogen Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 80, 53-67.	0.9	65
62	Developing smarter host mixtures to control plant disease. Plant Pathology, 2015, 64, 996-1004.	1.2	44
63	Recent advances in the Zymoseptoria triticiââ,¬â€œwheat interaction: insights from pathogenomics. Frontiers in Plant Science, 2015, 6, 102.	1.7	27
64	Is Zymoseptoria tritici a hemibiotroph?. Fungal Genetics and Biology, 2015, 79, 29-32.	0.9	95
65	The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen. Genetics, 2015, 201, 1213-1228.	1.2	123
66	Fitness Cost of Resistance: Impact on Management. , 2015, , 77-89.		19
67	Emergence and early evolution of fungicide resistance in North American populations of <i>Zymoseptoria tritici</i> . Plant Pathology, 2015, 64, 961-971.	1.2	79
68	Quantitative Trait Locus Mapping of Melanization in the Plant Pathogenic Fungus <i>Zymoseptoria tritici</i> . G3: Genes, Genomes, Genetics, 2014, 4, 2519-2533.	0.8	86
69	Can High-Risk Fungicides be Used in Mixtures Without Selecting for Fungicide Resistance?. Phytopathology, 2014, 104, 324-331.	1.1	44
70	Population Structure and Pathotype Diversity of the Wheat Blast Pathogen <i>Magnaporthe oryzae</i> 25 Years After Its Emergence in Brazil. Phytopathology, 2014, 104, 95-107.	1.1	144
71	An assay for quantitative virulence in <i><scp>R</scp>hynchosporium commune</i> reveals an association between effector genotype and virulence. Plant Pathology, 2014, 63, 405-414.	1.2	30
72	Measuring Quantitative Virulence in the Wheat Pathogen <i>Zymoseptoria tritici</i> Using High-Throughput Automated Image Analysis. Phytopathology, 2014, 104, 985-992.	1.1	102

#	Article	IF	CITATIONS
73	Hitchhiking Selection Is Driving Intron Gain in a Pathogenic Fungus. Molecular Biology and Evolution, 2014, 31, 1741-1749.	3.5	5
74	Comparative analysis of mitochondrial genomes from closely related Rhynchosporium species reveals extensive intron invasion. Fungal Genetics and Biology, 2014, 62, 34-42.	0.9	74
75	The Influence of Genetic Drift and Selection on Quantitative Traits in a Plant Pathogenic Fungus. PLoS ONE, 2014, 9, e112523.	1.1	21
76	Using dynamic diversity to achieve durable disease resistance in agricultural ecosystems. Tropical Plant Pathology, 2014, 39, 191-196.	0.8	54
77	Population genetic structure of Mycosphaerella graminicola and Quinone Outside Inhibitor (QoI) resistance in the Czech Republic. European Journal of Plant Pathology, 2013, 135, 211-224.	0.8	22
78	Fieldâ€based experimental evolution of three cereal pathogens using a mark–release–recapture strategy. Plant Pathology, 2013, 62, 106-114.	1.2	27
79	Population genetic evidence that basidiospores play an important role in the disease cycle of riceâ€infecting populations of <i>Rhizoctonia solani</i> AGâ€I IA in Iran. Plant Pathology, 2013, 62, 49-58.	1.2	12
80	The Population Genetic Structure of <i>Rhizoctonia solani</i> AG-3PT from Potato in the Colombian Andes. Phytopathology, 2013, 103, 862-869.	1.1	23
81	Global diversity and distribution of three necrotrophic effectors in <i>Phaeosphaeria nodorum</i> and related species. New Phytologist, 2013, 199, 241-251.	3.5	101
82	Experimental Measures of Pathogen Competition and Relative Fitness. Annual Review of Phytopathology, 2013, 51, 131-153.	3.5	117
83	Breakage-fusion-bridge Cycles and Large Insertions Contribute to the Rapid Evolution of Accessory Chromosomes in a Fungal Pathogen. PLoS Genetics, 2013, 9, e1003567.	1.5	166
84	Local adaptation and evolutionary potential along a temperature gradient in the fungal pathogen <i>Rhynchosporium commune</i> . Evolutionary Applications, 2013, 6, 524-534.	1.5	50
85	Coevolution and Life Cycle Specialization of Plant Cell Wall Degrading Enzymes in a Hemibiotrophic Pathogen. Molecular Biology and Evolution, 2013, 30, 1337-1347.	3.5	77
86	First Report of Resistance to Qol Fungicides in North American Populations of <i>Zymoseptoria tritici</i> , Causal Agent of Septoria Tritici Blotch of Wheat. Plant Disease, 2013, 97, 1511-1511.	0.7	26
87	Association between Virulence and Triazole Tolerance in the Phytopathogenic Fungus Mycosphaerella graminicola. PLoS ONE, 2013, 8, e59568.	1.1	31
88	DNA Fingerprinting of Pearls to Determine Their Origins. PLoS ONE, 2013, 8, e75606.	1.1	16
89	The Cysteine Rich Necrotrophic Effector SnTox1 Produced by Stagonospora nodorum Triggers Susceptibility of Wheat Lines Harboring Snn1. PLoS Pathogens, 2012, 8, e1002467.	2.1	233
90	The Accessory Genome as a Cradle for Adaptive Evolution in Pathogens. PLoS Pathogens, 2012, 8, e1002608.	2.1	227

#	Article	IF	CITATIONS
91	Intron Gains and Losses in the Evolution of Fusarium and Cryptococcus Fungi. Genome Biology and Evolution, 2012, 4, 1148-1161.	1.1	19
92	Phylogenetic and population genetic analyses of Phaeosphaeria nodorum and its close relatives indicate cryptic species and an origin in the Fertile Crescent. Fungal Genetics and Biology, 2012, 49, 882-895.	0.9	46
93	<i>Zymoseptoria ardabiliae</i> and <i>Z. pseudotritici</i> , two progenitor species of the septoria tritici leaf blotch fungus <i>Z. tritici</i> (synonym: <i>Mycosphaerella graminicola</i>). Mycologia, 2012, 104, 1397-1407.	0.8	71
94	Comparative Pathogenomics Reveals Horizontally Acquired Novel Virulence Genes in Fungi Infecting Cereal Hosts. PLoS Pathogens, 2012, 8, e1002952.	2.1	176
95	Quantitative Variation in Effector Activity of ToxA Isoforms from <i>Stagonospora nodorum</i> and <i>Pyrenophora tritici-repentis</i> . Molecular Plant-Microbe Interactions, 2012, 25, 515-522.	1.4	70
96	Frequency of mutations associated with fungicide resistance and population structure of Mycosphaerella graminicola in Tunisia. European Journal of Plant Pathology, 2012, 132, 111-122.	0.8	38
97	No biogeographical pattern for a rootâ€associated fungal species complex. Global Ecology and Biogeography, 2011, 20, 160-169.	2.7	74
98	Thermal adaptation in the fungal pathogen Mycosphaerella graminicola. Molecular Ecology, 2011, 20, 1689-1701.	2.0	98
99	Evolutionary history of the mitochondrial genome in Mycosphaerella populations infecting bread wheat, durum wheat and wild grasses. Molecular Phylogenetics and Evolution, 2011, 58, 192-197.	1.2	12
100	Evidence for Extensive Recent Intron Transposition in Closely Related Fungi. Current Biology, 2011, 21, 2017-2022.	1.8	57
101	The making of a new pathogen: Insights from comparative population genomics of the domesticated wheat pathogen <i>Mycosphaerella graminicola</i> and its wild sister species. Genome Research, 2011, 21, 2157-2166.	2.4	191
102	Electrophoretic karyotypes of Rhynchosporium commune, R. secalis and R. agropyri. European Journal of Plant Pathology, 2011, 129, 529-537.	0.8	3
103	Invasion of Rhynchosporium commune onto wild barley in the Middle East. Biological Invasions, 2011, 13, 321-330.	1.2	6
104	Effect of hosts on competition among clones and evidence of differential selection between pathogenic and saprophytic phases in experimental populations of the wheat pathogen Phaeosphaeria nodorum. BMC Evolutionary Biology, 2011, 11, 188.	3.2	37
105	Two new species of <i>Rhynchosporium</i> . Mycologia, 2011, 103, 195-202.	0.8	62
106	How can we achieve durable disease resistance in agricultural ecosystems?. New Phytologist, 2010, 185, 3-5.	3.5	49
107	Sexual Recombinants Make a Significant Contribution to Epidemics Caused by the Wheat Pathogen <i>Phaeosphaeria nodorum</i> . Phytopathology, 2010, 100, 855-862.	1.1	34
108	Whole-Genome and Chromosome Evolution Associated with Host Adaptation and Speciation of the Wheat Pathogen Mycosphaerella graminicola. PLoS Genetics, 2010, 6, e1001189.	1.5	142

#	Article	IF	CITATIONS
109	Evolution of Linked Avirulence Effectors in Leptosphaeria maculans Is Affected by Genomic Environment and Exposure to Resistance Genes in Host Plants. PLoS Pathogens, 2010, 6, e1001180.	2.1	158
110	Divergence Between Sympatric Rice- and Maize-Infecting Populations of <i>Rhizoctonia solani</i> AG-1 IA from Latin America. Phytopathology, 2010, 100, 172-182.	1.1	54
111	SnTox3 Acts in Effector Triggered Susceptibility to Induce Disease on Wheat Carrying the Snn3 Gene. PLoS Pathogens, 2009, 5, e1000581.	2.1	175
112	Qol resistance emerged independently at least 4 times in European populations of <i>Mycosphaerella graminicola</i> . Pest Management Science, 2009, 65, 155-162.	1.7	168
113	Phylogeographical analyses reveal global migration patterns of the barley scald pathogen <i>Rhynchosporium secalis</i> . Molecular Ecology, 2009, 18, 279-293.	2.0	43
114	Molecular evidence for recent founder populations and human-mediated migration in the barley scald pathogen Rhynchosporium secalis. Molecular Phylogenetics and Evolution, 2009, 51, 454-464.	1.2	88
115	Sequence conservation in the mitochondrial cytochrome b gene and lack of G143A QoI resistance allele in a global sample of <i>Rhynchosporium secalis</i> . Australasian Plant Pathology, 2009, 38, 202.	0.5	11
116	Genetic Structure of Populations of the Rice-Infecting Pathogen <i>Rhizoctonia solani</i> AG-1 IA from China. Phytopathology, 2009, 99, 1090-1099.	1.1	90
117	Population Genetics of Fungal and Oomycete Effectors Involved in Gene-for-Gene Interactions. Molecular Plant-Microbe Interactions, 2009, 22, 371-380.	1.4	134
118	Wheat Domestication Accelerated Evolution and Triggered Positive Selection in the β-Xylosidase Enzyme of Mycosphaerella graminicola. PLoS ONE, 2009, 4, e7884.	1.1	17
119	RAPID SPECIATION FOLLOWING RECENT HOST SHIFTS IN THE PLANT PATHOGENIC FUNGUS RHYNCHOSPORIUM. Evolution; International Journal of Organic Evolution, 2008, 62, 1418-1436.	1.1	97
120	Highly polymorphic microsatellite loci in the rice- and maize-infecting fungal pathogen Rhizoctonia solani anastomosis group 1 IA. Molecular Ecology Resources, 2008, 8, 686-689.	2.2	21
121	Evolution of the <i>CYP51</i> gene in <i>Mycosphaerella graminicola</i> : evidence for intragenic recombination and selective replacement. Molecular Plant Pathology, 2008, 9, 305-316.	2.0	94
122	Genetic Structure of Populations of Rhizoctonia solani Anastomosis Group-1 IA from Soybean in Brazil. Phytopathology, 2008, 98, 932-941.	1.1	55
123	The Origins of Plant Pathogens in Agro-Ecosystems. Annual Review of Phytopathology, 2008, 46, 75-100.	3.5	514
124	Intraspecific comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola. Fungal Genetics and Biology, 2008, 45, 628-637.	0.9	78
125	Divergence Between Sympatric Rice- and Soybean-Infecting Populations of <i>Rhizoctonia solani</i> Anastomosis Group-1 IA. Phytopathology, 2008, 98, 1326-1333.	1.1	33
126	Significant difference in pathogenicity between MAT1-1 and MAT1-2 isolates in the wheat pathogen Mycosphaerella graminicola. Fungal Genetics and Biology, 2007, 44, 339-346.	0.9	45

#	Article	IF	CITATIONS
127	Concordant evolution of mitochondrial and nuclear genomes in the wheat pathogen Phaeosphaeria nodorum. Fungal Genetics and Biology, 2007, 44, 764-772.	0.9	14
128	Dothideomycete–Plant Interactions Illuminated by Genome Sequencing and EST Analysis of the Wheat Pathogen <i>Stagonospora nodorum</i> . Plant Cell, 2007, 19, 3347-3368.	3.1	235
129	The origin and colonization history of the barley scald pathogen Rhynchosporium secalis. Journal of Evolutionary Biology, 2007, 20, 1311-1321.	0.8	46
130	Geographical variation and positive diversifying selection in the host-specific toxin SnToxA. Molecular Plant Pathology, 2007, 8, 321-332.	2.0	92
131	Sexual reproduction facilitates the adaptation of parasites to antagonistic host environments: Evidence from empirical study in the wheat-Mycosphaerella graminicola system. International Journal for Parasitology, 2007, 37, 861-870.	1.3	40
132	Global migration patterns in the fungal wheat pathogen Phaeosphaeria nodorum. Molecular Ecology, 2006, 15, 2895-2904.	2.0	154
133	Origin and Domestication of the Fungal Wheat Pathogen Mycosphaerella graminicola via Sympatric Speciation. Molecular Biology and Evolution, 2006, 24, 398-411.	3.5	216
134	The Frequencies and Spatial Distribution of Mating Types in Stagonospora nodorum Are Consistent with Recurring Sexual Reproduction. Phytopathology, 2006, 96, 234-239.	1.1	57
135	Global Hierarchical Gene Diversity Analysis Suggests the Fertile Crescent Is Not the Center of Origin of the Barley Scald Pathogen Rhynchosporium secalis. Phytopathology, 2006, 96, 941-950.	1.1	71
136	Differential Selection on Rhynchosporium secalis During Parasitic and Saprophytic Phases in the Barley Scald Disease Cycle. Phytopathology, 2006, 96, 1214-1222.	1.1	85
137	Selection for increased cyproconazole tolerance inMycosphaerella graminicolathrough local adaptation and in response to host resistance. Molecular Plant Pathology, 2006, 7, 259-268.	2.0	76
138	Emergence of a new disease as a result of interspecific virulence gene transfer. Nature Genetics, 2006, 38, 953-956.	9.4	667
139	Genetic Structure of Mycosphaerella graminicola Populations from Iran, Argentina and Australia. European Journal of Plant Pathology, 2006, 115, 223-233.	0.8	18
140	Isolation and characterization of microsatellite loci from the barley scald pathogen, Rhynchosporium secalis. Molecular Ecology Notes, 2005, 5, 546-548.	1.7	17
141	Isolation and characterization of EST-derived microsatellite loci from the fungal wheat pathogen Phaeosphaeria nodorum. Molecular Ecology Notes, 2005, 5, 931-933.	1.7	27
142	Migration patterns among global populations of the pathogenic fungus Mycosphaerella graminicola. Molecular Ecology, 2005, 14, 1881-1896.	2.0	71
143	Variation for neutral markers is correlated with variation for quantitative traits in the plant pathogenic fungus Mycosphaerella graminicola. Molecular Ecology, 2005, 14, 2683-2693.	2.0	146
144	Population structure of the rice sheath blight pathogen Rhizoctonia solani AG-1 IA from India. European Journal of Plant Pathology, 2005, 112, 113-121.	0.8	44

#	Article	IF	CITATIONS
145	Analytical and Experimental Methods for Estimating Population Genetic Structure of Fungi. Mycology, 2005, , 241-263.	0.5	0
146	Genetic structure of Iranian Pyricularia grisea populations based on rep-PCR fingerprinting. European Journal of Plant Pathology, 2004, 110, 909-919.	0.8	28
147	Phylogenetic analysis of globally distributed Mycosphaerella graminicola populations based on three DNA sequence loci. Fungal Genetics and Biology, 2004, 41, 226-238.	0.9	50
148	The interaction among evolutionary forces in the pathogenic fungus Mycosphaerella graminicola. Fungal Genetics and Biology, 2004, 41, 590-599.	0.9	73
149	Evidence for subdivision of the root-endophyte Phialocephala fortinii into cryptic species and recombination within species. Fungal Genetics and Biology, 2004, 41, 676-687.	0.9	85
150	Population Genetics of Plant Pathogenic Fungi. , 2004, , 1046-1048.		28
151	Evidence for Natural Selection in the Mitochondrial Genome of Mycosphaerella graminicola. Phytopathology, 2004, 94, 261-267.	1.1	23
152	Molecular Population Genetic Analysis Differentiates Two Virulence Mechanisms of the Fungal Avirulence Gene NIP1. Molecular Plant-Microbe Interactions, 2004, 17, 1114-1125.	1.4	129
153	An Analysis of the Durability of Resistance to Plant Viruses. Phytopathology, 2003, 93, 941-952.	1.1	190
154	The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genetics and Biology, 2003, 38, 286-297.	0.9	262
155	Further evidence for sexual reproduction in Rhynchosporium secalis based on distribution and frequency of mating-type alleles. Fungal Genetics and Biology, 2003, 40, 115-125.	0.9	106
156	Population Structure of Mycosphaerella graminicola: From Lesions to Continents. Phytopathology, 2002, 92, 946-955.	1.1	278
157	PATHOGENPOPULATIONGENETICS, EVOLUTIONARYPOTENTIAL, ANDDURABLERESISTANCE. Annual Review of Phytopathology, 2002, 40, 349-379.	3.5	1,785
158	Frequency of Sexual Reproduction by Mycosphaerella graminicola on Partially Resistant Wheat Cultivars. Phytopathology, 2002, 92, 1175-1181.	1.1	31
159	Intra- and intersporal diversity of ITS rDNA sequences in Glomus intraradices assessed by cloning and sequencing, and by SSCP analysis. Mycological Research, 2002, 106, 670-681.	2.5	66
160	Distribution of mating type alleles in the wheat pathogen Mycosphaerella graminicola over spatial scales from lesions to continents. Fungal Genetics and Biology, 2002, 36, 128-136.	0.9	131
161	Local adaptation and effect of host genotype on the rate of pathogen evolution: an experimental test in a plant pathosystem. Journal of Evolutionary Biology, 2002, 15, 634-647.	0.8	147
162	The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica, 2002, 124, 163-180.	0.6	437

#	Article	IF	CITATIONS
163	Using Restriction Fragment Length Polymorphisms to Assess Temporal Variation and Estimate the Number of Ascospores that Initiate Epidemics in Field Populations of Mycosphaerella graminicola. Phytopathology, 2001, 91, 1011-1017.	1.1	54
164	Estimation of Rates of Recombination and Migration in Populations of Plant Pathogens—A Reply. Phytopathology, 2000, 90, 324-326.	1.1	34
165	The Genetic Structure of Field Populations of Rhynchosporium secalis from Three Continents Suggests Moderate Gene Flow and Regular Recombination. Phytopathology, 2000, 90, 901-908.	1.1	102
166	High Levels of Gene Flow and Heterozygote Excess Characterize Rhizoctonia solani AG-1 IA (Thanatephorus cucumeris) from Texas. Fungal Genetics and Biology, 1999, 28, 148-159.	0.9	75
167	Genetic Structure of Rhynchosporium secalis in Australia. Phytopathology, 1999, 89, 639-645.	1.1	136
168	The effect of an oak wilt epidemic on the genetic structure of a Texas live oak population. Canadian Journal of Botany, 1998, 76, 1900-1907.	1.2	20
169	Genetic Structure and Temporal Dynamics of a Colletotrichum graminicola Population in a Sorghum Disease Nursery. Phytopathology, 1998, 88, 1087-1093.	1.1	60
170	Measuring Immigration and Sexual Reproduction in Field Populations of Mycosphaerella graminicola. Phytopathology, 1998, 88, 1330-1337.	1.1	114
171	The effect of an oak wilt epidemic on the genetic structure of a Texas live oak population. Canadian Journal of Botany, 1998, 76, 1900-1907.	1.2	11
172	Gene Flow and Sexual Reproduction in the Wheat Glume Blotch Pathogen Phaeosphaeria nodorum (Anamorph Stagonospora nodorum). Phytopathology, 1997, 87, 353-358.	1.1	103
173	High Genetic Similarity Among Populations of Phaeosphaeria nodorum Across Wheat Cultivars and Regions in Switzerland. Phytopathology, 1997, 87, 1134-1139.	1.1	59
174	The Population Genetics of Fungi: Tools and Techniques. Phytopathology, 1997, 87, 448-453.	1.1	351
175	The role of selection on the genetic structure of pathogen populations: Evidence from field experiments with Mycosphaerella graminicola on wheat. Developments in Plant Breeding, 1997, , 87-94.	0.2	6
176	The role of selection on the genetic structure of pathogen populations: Evidence from field experiments with Mycosphaerella graminicola on wheat. Euphytica, 1996, 92, 73-80.	0.6	45
177	Sexual Reproduction Plays a Major Role in the Genetic Structure of Populations of the Fungus <i>Mycosphaerella graminicola</i> . Genetics, 1996, 142, 1119-1127.	1.2	197
178	RFLPs in mitochondrial and nuclear DNA indicate low levels of genetic diversity in the oak wilt pathogen Ceratocystis fagacearum. Current Genetics, 1995, 27, 373-378.	0.8	22
179	Genetic stability in a population of a plant pathogenic fungus over time. Molecular Ecology, 1994, 3, 209-218.	2.0	114
180	Genetic Variability in Nuclear DNA in Field Populations ofStagonospora nodorum. Phytopathology, 1994, 84, 250.	1.1	143

#	Article	IF	CITATIONS
181	Gene Flow in Plant Pathosystems. Annual Review of Phytopathology, 1993, 31, 353-373.	3.5	498
182	Population Genetics of Plant Pathogenic Fungi. BioScience, 1993, 43, 311-319.	2.2	167
183	Gene Flow Between Geographic Populations ofMycosphaerella graminicola(AnamorphSeptoria tritici) Detected with Restriction Fragment Length Polymorphism Markers. Phytopathology, 1993, 83, 1148.	1.1	121
184	DNA fingerprinting of the plant pathogenic fungusMycosphaerella graminicola (anamorphSeptoria) Tj ETQq0 0 0	rgBT /Ove 1.8	erlock 10 Tf 5
185	Chromosome length polymorphisms in a Septoria tritici population. Current Genetics, 1991, 19, 265-271.	0.8	96
186	Restriction fragment length polymorphisms in Septoria tritici occur at a high frequency. Current Genetics, 1990, 17, 133-138.	0.8	100
187	DNA Restriction Fragment Length Polymorphisms Among <i>Mycosphaerella graminicola</i> (Anamorph <i>Septoria tritici</i>) Isolates Collected from a Single Wheat Field. Phytopathology, 1990, 80, 1368.	1.1	150
188	The Population Biology of Host-Pathogen Interactions. Annual Review of Phytopathology, 1989, 27, 77-94.	3.5	61
189	Responses of Twoâ€, Threeâ€, and Four omponent Barley Mixtures to a Variable Pathogen Population. Crop Science, 1988, 28, 447-452.	0.8	60
190	Population genetic structure of the sheath blight pathogen Rhizoctonia solani AG-1 IA from rice fields	0.6	3

190 in China, Japan and the Philippines. Acta Scientiarum - Agronomy, 0, 42, e42457.