Caiyun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4948515/publications.pdf Version: 2024-02-01

CAIVUN MANC

#	Article	IF	CITATIONS
1	Sustainable alternative to bisphenol A epoxy resin: high-performance recyclable epoxy vitrimers derived from protocatechuic acid. Polymer Chemistry, 2020, 11, 4500-4506.	3.9	67
2	Phosphorus- and Sulfur-Containing High-Refractive-Index Polymers with High <i>T</i> _g and Transparency Derived from a Bio-Based Aldehyde. Macromolecules, 2020, 53, 125-131.	4.8	43
3	Gel–Sol Transition of Vanillin-Based Polyimine Vitrimers: Imparting Vitrimers with Extra Welding and Self-Healing Abilities. ACS Applied Polymer Materials, 2020, 2, 295-303.	4.4	39
4	Low-Dielectric Polymers Derived From Biomass. ACS Applied Polymer Materials, 2021, 3, 2835-2848.	4.4	36
5	Low Dielectric Polymers with High Thermostability Derived from Biobased Vanillin. ACS Sustainable Chemistry and Engineering, 2020, 8, 15013-15019.	6.7	35
6	Understanding how intrinsic micro-pores affect the dielectric properties of polymers: an approach to synthesize ultra-low dielectric polymers with bulky tetrahedral units as cores. Polymer Chemistry, 2020, 11, 2674-2680.	3.9	27
7	Biomass materials derived from anethole: conversion and application. Polymer Chemistry, 2020, 11, 954-963.	3.9	26
8	A bio-based low dielectric material at a high frequency derived from resveratrol. Polymer Chemistry, 2021, 12, 402-407.	3.9	24
9	Resveratrol-Based Fluorinated Materials with High Thermostability and Good Dielectric Properties at High Frequency. ACS Sustainable Chemistry and Engineering, 2020, 8, 16905-16911.	6.7	17
10	A biobased low dielectric resin derived from vanillin and guaiacol. Polymer Chemistry, 2021, 12, 766-770.	3.9	15
11	The bio-based phthalocyanine resins with high Tg and high char yield derived from vanillin. Polymer, 2021, 224, 123723.	3.8	13
12	New organic–inorganic hybrid materials: high refractive index polymers based on cyclotriphophazene with high thermostability and transparency. Materials Chemistry Frontiers, 2021, 5, 5826-5832.	5.9	9
13	A highly heat-resistant phthalocyanine resin based on a bio-based anethole. European Polymer Journal, 2021, 157, 110645.	5.4	9
14	Synthesis of well-defined heteroglycopolymers <i>via</i> combining sequential click reactions and PPM: the effects of linker and heterogeneity on Con A binding. Polymer Chemistry, 2020, 11, 3054-3065.	3.9	5
15	Precise synthesis of heterogeneous glycopolymers with wellâ€defined saccharide motifs in the side chain via postâ€polymerization modification and recognition with lectin. Journal of Polymer Science, 2020, 58, 2074-2087.	3.8	4
16	Carbohydrate–lectin recognition of well-defined heterogeneous dendronized glycopolymers: systematic studies on the heterogeneity in glycopolymer–lectin binding. Polymer Chemistry, 2021, 12, 4722-4735.	3.9	1