List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4948402/publications.pdf Version: 2024-02-01

	159525	168321
3,574	30	53
citations	h-index	g-index
141	141	2943
docs citations	times ranked	citing authors
	citations 141	3,574 30 citations h-index 141 141

Μ/ΙΜ ΒΟΠΜΜΑΝ

#	Article	IF	CITATIONS
1	Structural characterization of spray-dried microgranules by spin-echo small-angle neutron scattering. Powder Technology, 2021, 378, 680-684.	2.1	5
2	Simulations of foil-based spin-echo (modulated) small-angle neutron scattering with a sample using <i>McStas</i> . Journal of Applied Crystallography, 2021, 54, 195-202.	1.9	1
3	The microscopic distribution of hydrophilic polymers in interpenetrating polymer networks (IPNs) of medical grade silicone. Polymer, 2021, 224, 123671.	1.8	5
4	Scattering from oriented objects analysed by the anisotropic Guinier–Porod model. Food Structure, 2021, 30, 100221.	2.3	2
5	Spin-echo small-angle neutron scattering for multiscale structure analysis of food materials. Food Structure, 2021, 30, 100235.	2.3	7
6	Impact of water degumming and enzymatic degumming on gum mesostructure formation in crude soybean oil. Food Chemistry, 2020, 311, 126017.	4.2	16
7	Analysis of SESANS data byÂnumericalÂHankel transform implementationÂinÂSasView. Journal of Neutron Research, 2020, 22, 57-70.	0.4	5
8	Small angle neutron scattering quantifies the hierarchical structure in fibrous calcium caseinate. Food Hydrocolloids, 2020, 106, 105912.	5.6	12
9	Mesoporous Silica Formation Mechanisms Probed Using Combined Spin–Echo Modulated Small-Angle Neutron Scattering (SEMSANS) and Small-Angle Neutron Scattering (SANS). ACS Applied Materials & Interfaces, 2020, 12, 28461-28473.	4.0	15
10	Fibre formation in calcium caseinate influenced by solvent isotope effect and drying method – A neutron spectroscopy study. Chemical Engineering Science, 2019, 207, 1270-1277.	1.9	5
11	Small-angle neutron scattering (SANS) and spin-echo SANS measurements reveal the logarithmic fractal structure of the large-scale chromatin organization in HeLa nuclei. Journal of Applied Crystallography, 2019, 52, 844-853.	1.9	11
12	Systematically quantifying oil–water microemulsion structures using (spin-echo) small angle neutron scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575, 166-175.	2.3	5
13	Evolution of dispersion in the melt compounding of a model polymer nanocomposite system: A multi-scale study. Polymer Testing, 2019, 76, 109-118.	2.3	3
14	A versatile shear cell for investigation of structure of food materials under shear. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 566, 21-28.	2.3	11
15	Networks of micronized fat crystals grown under static conditions. Food and Function, 2018, 9, 2102-2111.	2.1	25
16	The extended law of corresponding states when attractions meet repulsions. Soft Matter, 2018, 14, 3704-3715.	1.2	7
17	Air bubbles in fibrous caseinate gels investigated by neutron refraction, X-ray tomography and refractive microscope. Food Hydrocolloids, 2018, 83, 287-295.	5.6	18
18	Feasibility and applications of the spin-echo modulation option for a small angle neutron scattering instrument at the European Spallation Source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 856, 119-132.	0.7	4

#	Article	IF	CITATIONS
19	High-strength bacterial cellulose–polyacrylamide hydrogels: Mesostructure anisotropy as studied by spin-echo small-angle neutron scattering and cryo-SEM. European Polymer Journal, 2017, 88, 269-279.	2.6	28
20	Influence of neutron irradiation on the microstructure of nuclear graphite: An X-ray diffraction study. Journal of Nuclear Materials, 2017, 487, 323-330.	1.3	20
21	A Journey along the Extruder with Polystyrene:C ₆₀ Nanocomposites: Convergence of Feeding Formulations into a Similar Nanomorphology. Macromolecules, 2017, 50, 3301-3312.	2.2	8
22	Investigation of the closed porosity of functional ceramic materials by spin-echo small-angle neutron scattering. Journal of Surface Investigation, 2017, 11, 92-98.	0.1	1
23	Additive scaling law for structural organization of chromatin in chicken erythrocyte nuclei. Physical Review E, 2017, 96, 012411.	0.8	21
24	Spin-echo small-angle neutron scattering study of the structure organization of the chromatin in biological cell. Journal of Physics: Conference Series, 2017, 862, 012010.	0.3	6
25	On the analysis of time-of-flight spin-echo modulated dark-field imaging data. Journal of Physics: Conference Series, 2017, 862, 012026.	0.3	4
26	Wavelength-independent constant period spin-echo modulated small angle neutron scattering. Review of Scientific Instruments, 2016, 87, 063907.	0.6	4
27	Characterization of the Stratified Morphology of Nanoparticle Agglomerates. Journal of Physical Chemistry C, 2016, 120, 20446-20453.	1.5	11
28	From nanopores to macropores: Fractal morphology of graphite. Carbon, 2016, 96, 541-547.	5.4	23
29	Microstructure and rheology of globular protein gels in the presence of gelatin. Food Hydrocolloids, 2016, 55, 34-46.	5.6	34
30	Relating water holding of ovalbumin gels to aggregate structure. Food Hydrocolloids, 2016, 52, 87-94.	5.6	44
31	Quantitative Neutron Dark-field Imaging through Spin-Echo Interferometry. Scientific Reports, 2015, 5, 16576.	1.6	30
32	Characterizing Length Scales that Determine the Mechanical Behavior of gels from Crosslinked Casein Micelles. Food Biophysics, 2015, 10, 416-427.	1.4	15
33	On characterization of anisotropic plant protein structures. Food and Function, 2014, 5, 3233-3240.	2.1	51
34	Interpretation of X-ray diffraction patterns of (nuclear) graphite. Carbon, 2014, 69, 17-24.	5.4	51
35	Direct comparison of SESANS and SAXS to measure colloidal interactions. Europhysics Letters, 2014, 106, 28002.	0.7	9
36	Multidimensional Nature of Fluidized Nanoparticle Agglomerates. Langmuir, 2014, 30, 12696-12702.	1.6	32

#	Article	IF	CITATIONS
37	Concept for a time-of-flight Small Angle Neutron Scattering instrument at the European Spallation Source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 762, 22-30.	0.7	23
38	Influence of substrate microstructure on longitudinal correlation length of porous system of anodic alumina: Small-angle scattering study. Nanotechnologies in Russia, 2013, 8, 631-638.	0.7	6
39	DCD USANS and SESANS: a comparison of two neutron scattering techniques applicable for the study of large-scale structures. Journal of Applied Crystallography, 2013, 46, 354-364.	1.9	20
40	Multidimensionality in fluidized nanopowder agglomerates. AIP Conference Proceedings, 2013, , .	0.3	3
41	Using a grating analyser for SEMSANS investigations in the very small angle range. Physica B: Condensed Matter, 2012, 407, 4132-4135.	1.3	15
42	Elucidation of density profile of self-assembled sitosterol + oryzanol tubules with small-angle neutron scattering. Faraday Discussions, 2012, 158, 223.	1.6	45
43	Stability of aqueous food grade fibrillar systems against pH change. Faraday Discussions, 2012, 158, 125.	1.6	42
44	TOF-SEMSANS—Time-of-flight spin-echo modulated small-angle neutron scattering. Journal of Applied Physics, 2012, 112, .	1.1	24
45	The Kinetics and Mechanism of Long-Range Pore Ordering in Anodic Films on Aluminum. Journal of Physical Chemistry C, 2011, 115, 23726-23731.	1.5	50
46	Magnetic topology of Co-based inverse opal-like structures. Physical Review B, 2011, 84, .	1.1	21
47	McStas-model of the delft SESANS. Physica B: Condensed Matter, 2011, 406, 2361-2364.	1.3	10
48	Combined SANS–SESANS, from 1nm to 0.1mm in one instrument. Physica B: Condensed Matter, 2011, 406, 2357-2360.	1.3	25
49	A magnetised foil as inclined π-flipper for time-of-flight neutron beams. Physica B: Condensed Matter, 2011, 406, 2467-2469.	1.3	4
50	Spin-Echo Small Angle Neutron Scattering analysis of liposomes and bacteria. Journal of Physics: Conference Series, 2010, 247, 012016.	0.3	3
51	Study of Inverse Ni-based Photonic Crystal using the Microradian X-ray Diffraction. Journal of Physics: Conference Series, 2010, 247, 012029.	0.3	3
52	Spin-echo small-angle neutron scattering (SESANS) measurements of needle-like crystallites of gelator compounds. Journal of Physics: Conference Series, 2010, 251, 012035.	0.3	1
53	Long-range ordering in anodic alumina films: a microradian X-ray diffraction study. Journal of Applied Crystallography, 2010, 43, 531-538.	1.9	33
54	Milk Gelation Studied with Small Angle Neutron Scattering Techniques and Monte Carlo Simulations. Journal of Physical Chemistry A, 2010, 114, 2412-2426.	1.1	29

#	Article	IF	CITATIONS
55	Fabrication of Artificial Opals by Electric-Field-Assisted Vertical Deposition. Langmuir, 2010, 26, 2346-2351.	1.6	56
56	Determination of the real structure of artificial and natural opals on the basis of three-dimensional reconstructions of reciprocal space. JETP Letters, 2009, 90, 272-277.	0.4	20
57	Spatial modulation of a neutron beam by Larmor precession. Physica B: Condensed Matter, 2009, 404, 2585-2589.	1.3	18
58	Structure, anisotropy and fractals in compressed cohesive powders. Powder Technology, 2009, 189, 6-13.	2.1	9
59	Double Stacking Faults in Convectively Assembled Crystals of Colloidal Spheres. Langmuir, 2009, 25, 10408-10412.	1.6	54
60	Structure in cohesive powders studied with spin-echo small angle neutron scattering. Granular Matter, 2008, 10, 407-414.	1.1	10
61	Analysis of spin-echo small-angle neutron scattering measurements. Journal of Applied Crystallography, 2008, 41, 868-885.	1.9	101
62	Real-space neutron scattering methods. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 586, 9-14.	0.7	26
63	Real-Space Neutron Scattering without Collimation: SESANS at the Delft University of Technology. Neutron News, 2008, 19, 19-21.	0.1	0
64	Polarization optimization of spin-echo small angle scattering instruments. Review of Scientific Instruments, 2008, 79, 015113.	0.6	13
65	Development of the Neutron Reflectometer OffSpec at the Delft University of Technology. Neutron News, 2008, 19, 22-25.	0.1	7
66	Stress, strain, and bulk microstructure in a cohesive powder. Physical Review E, 2008, 77, 051303.	0.8	11
67	Neutron refraction by cylindrical metal wires. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 574, 324-329.	0.7	11
68	Phase-object approximation in small-angle neutron scattering experiments on silicon gratings. Journal of Applied Crystallography, 2007, 40, 151-157.	1.9	22
69	Probing the droplet cluster structure in acidified temperature ycled o/w emulsion gels by means of SESANS ^{â€} . International Journal of Food Science and Technology, 2007, 42, 746-752.	1.3	7
70	A novel application of neutron scattering on dairy products. Food Hydrocolloids, 2007, 21, 154-158.	5.6	33
71	Effect of processing on droplet cluster structure in emulsion gels. Food Hydrocolloids, 2007, 21, 844-854.	5.6	16
72	Analysis of artificial silicon microstructures by ultra-small-angle and spin-echo small-angle neutron scattering. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 579, 1081-1089.	0.7	6

#	Article	IF	CITATIONS
73	Spin-echo small-angle neutron scattering for magnetic samples. Journal of Applied Crystallography, 2006, 39, 252-258.	1.9	15
74	Light scattering measurements on microemulsions: Estimation of droplet sizes. International Journal of Pharmaceutics, 2006, 312, 187-195.	2.6	91
75	Three-dimensional magnetic spin-echo small-angle neutron scattering and neutron depolarization: A comparison. Review of Scientific Instruments, 2006, 77, 073902.	0.6	14
76	Application of spin-echo small-angle neutron scattering to study the structure of charged colloids. Physica B: Condensed Matter, 2005, 356, 218-222.	1.3	10
77	Spin-echo methods for SANS and neutron reflectometry. Physica B: Condensed Matter, 2005, 357, 66-72.	1.3	19
78	Structure of hard-sphere colloid observed in real space by spin-echo small-angle neutron scattering. Physica B: Condensed Matter, 2005, 357, 452-455.	1.3	2
79	Neutron and ion beams in biological research. Journal of Radioanalytical and Nuclear Chemistry, 2005, 264, 271-275.	0.7	8
80	Spin-echo small angle neutron scattering in Delft. Review of Scientific Instruments, 2005, 76, 033901.	0.6	96
81	SESANS with a monochromatic beam or with time-of-flight applied on colloidal systems. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 529, 16-21.	0.7	10
82	Comparison of the performance of SANS and SESANS. Physica B: Condensed Matter, 2004, 350, E787-E790.	1.3	17
83	On the neutron scattering length density of proteins in H2O/D2O. Physica B: Condensed Matter, 2004, 350, E877-E880.	1.3	20
84	SESANS studies of colloid phase transitions, dairy products and polymer fibres. Physica B: Condensed Matter, 2004, 350, 140-146.	1.3	28
85	Neutron refraction and transmission studied by SESANS. Physica B: Condensed Matter, 2004, 350, E791-E794.	1.3	2
86	A Small-Angle Neutron Scattering Study of Cholic Acid-Based Organogel Systems. Langmuir, 2004, 20, 2075-2080.	1.6	27
87	Magnetic design of a spin-echo small-angle neutron-scattering instrument. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 496, 437-445.	0.7	5
88	Larmor precession applications: magnetised foils as spin flippers in spin-echo SANS with varying wavelength. Physica B: Condensed Matter, 2003, 335, 164-168.	1.3	17
89	Ferromagnetic foils as monochromatic π flippers for application in spin-echo SANS. Physica B: Condensed Matter, 2003, 335, 247-249.	1.3	15
90	Model calculations for the spin-echo small-angle neutron-scattering correlation function. Journal of Applied Crystallography, 2003, 36, 109-116.	1.9	21

#	Article	IF	CITATIONS
91	Real-space interpretation of spin-echo small-angle neutron scattering. Journal of Applied Crystallography, 2003, 36, 117-124.	1.9	71
92	Spin-echo small-angle neutron scattering to study particle aggregates. Journal of Applied Crystallography, 2003, 36, 816-819.	1.9	16
93	Structural transitions of hard-sphere colloids studied by spin-echo small-angle neutron scattering. Journal of Applied Crystallography, 2003, 36, 1417-1423.	1.9	55
94	Spin control of the lifetime of an intramolecular charge-transfer excited state. Photochemical and Photobiological Sciences, 2003, 2, 995.	1.6	26
95	Magnetized foils as π flippers in neutron spin-echo spectrometry. Journal of Applied Physics, 2002, 92, 3354-3362.	1.1	18
96	Elastic Neutron Scattering Measurements Using Larmor Precession of Polarized Neutrons. Lecture Notes in Physics, 2002, , 87-99.	0.3	24
97	High temperature SANS experiments on Nb(C,N) and MnS precipitates in HSLA steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 1883-1891.	1.1	19
98	First quantitative test of spin-echo small-angle neutron scattering. Applied Physics A: Materials Science and Processing, 2002, 74, s115-s117.	1.1	15
99	Overview of new Larmor precession techniques. Applied Physics A: Materials Science and Processing, 2002, 74, s323-s325.	1.1	4
100	Spin-echo SANS based on adiabatic HF flippers in dipole magnets with skew poles. Applied Physics A: Materials Science and Processing, 2002, 74, s79-s81.	1.1	8
101	SANS experiments on Nb(C, N) and MnS precipitates in HSLA steel. Applied Physics A: Materials Science and Processing, 2002, 74, s978-s980.	1.1	3
102	Magnetised foils as ?-flippers in spin-echo spectrometry. Applied Physics A: Materials Science and Processing, 2002, 74, s94-s96.	1.1	4
103	Line-integral corrections in Larmor-precession devices. Applied Physics A: Materials Science and Processing, 2002, 74, s174-s176.	1.1	1
104	Technical Aspects of Larmor Precession with Inclined Front and End Faces. Lecture Notes in Physics, 2002, , 100-115.	0.3	11
105	Location of the Outer Shell and Influence of pH on Carboxylic Acid-Functionalized Poly(propyleneimine) Dendrimers. Macromolecules, 2001, 34, 8380-8383.	2.2	39
106	Line integral corrections in spin-echo small angle neutron scattering instrument. Physica B: Condensed Matter, 2001, 297, 28-31.	1.3	7
107	Development of spin-echo small-angle neutron scattering. Journal of Applied Crystallography, 2000, 33, 767-770.	1.9	27
108	Spin-echo small-angle neutron scattering calculations. Physica B: Condensed Matter, 2000, 276-278, 126-127.	1.3	9

#	Article	IF	CITATIONS
109	An analysis of magnetic field inhomogeneities in a spin-echo small-angle neutron scattering instrument. Physica B: Condensed Matter, 2000, 276-278, 136-137.	1.3	6
110	Absolute Orientation of Molecules of Amphiphilic Alcohols in Crystalline Monolayers at the Airâ^'Water Interface. Journal of Physical Chemistry B, 2000, 104, 6843-6850.	1.2	15
111	Spin echo small angle neutron scattering experiment. Physica B: Condensed Matter, 1999, 267-268, 79-83.	1.3	16
112	Two-dimensional crystalline structures and photochemical behavior of cinnamate monolayers on water surfaces. Chirality, 1998, 10, 60-65.	1.3	11
113	Detailed Structure of Molecularly Thin Polyelectrolyte Multilayer Films on Solid Substrates as Revealed by Neutron Reflectometry. Macromolecules, 1998, 31, 8893-8906.	2.2	555
114	Structural Characterization of Valinomycin and Nonactin at the Airâ^'Solution Interface by Grazing Incidence X-ray Diffraction. Journal of the American Chemical Society, 1997, 119, 11211-11216.	6.6	20
115	An Insight into the Ice Nucleation Process via Design of Crystalline Ice Nucleators of Variable Size. Journal of Physical Chemistry B, 1997, 101, 8874-8877.	1.2	14
116	Separation of Enantiomers and Racemate Formation in Two-Dimensional Crystals at the Water Surface from Racemic α-Amino Acid Amphiphiles: Design and Structure. Journal of the American Chemical Society, 1997, 119, 933-942.	6.6	109
117	Two-axis neutron and x-ray reflectivity: How to avoid alignment pitfalls and how to correct for them. Journal of Neutron Research, 1997, 5, 133-146.	0.4	3
118	Crystalline Mono―and Multilayer Selfâ€Assemblies of Oligothiophenes at the Air–Water Interface. Chemistry - A European Journal, 1997, 3, 930-939.	1.7	15
119	Self-Aggregated Two-Dimensional Crystal Structure of the Mixed Monolayer of Triacontanoic Acid and Nonacosylamine. Evidence in Favor of an Ordered Arrangement of Ionized Head Groups. Langmuir, 1996, 12, 1011-1017.	1.6	6
120	Formation of Chiral Interdigitated Multilayers at the Air-Liquid Interface Through Acid-Base Interactions. Science, 1996, 274, 2046-2049.	6.0	34
121	Head-group variations and monolayer structures of diol derivatives. , 1996, , 351-355.		3
122	Resolution Function for Two-Axis Specular Neutron Reflectivity. Journal of Applied Crystallography, 1996, 29, 152-158.	1.9	13
123	Chirality effects on 2D phase transitions. Thin Solid Films, 1996, 284-285, 56-61.	0.8	22
124	Monolayer behaviour of chiral compounds at the air-water interface: 4-hexadecyloxy-butane-1,2-diol. Thin Solid Films, 1996, 284-285, 211-215.	0.8	34
125	Chiral and herringbone symmetry breaking in water-surface monolayers. Physical Review E, 1996, 53, 667-673.	0.8	24
126	Elucidation of Multilayer Growth of Amphiphiles on Liquid Surfaces. The Journal of Physical Chemistry, 1996, 100, 8356-8362.	2.9	9

8

#	Article	IF	CITATIONS
127	Self-assembled crystalline monolayers and multilayers of n-alkanes on the water surface. Advanced Materials, 1995, 7, 857-862.	11.1	53
128	Strukturbestimmung im Grenzbereich zwischen Monoschichten und dreidimensionalen Kristallen; eine Untersuchung nanokristalliner Aggregate von α,ï‰â€Docosandiol an der GrenzflÃæhe Wasser‣uft mit Röntgenbeugung unter streifendem Einfall. Angewandte Chemie, 1995, 107, 707-711.	1.6	5
129	The Structural Properties of Uncompressed Crystalline Monolayers of Alcohols C _{<i>n</i>} H _{2<i>n</i>+1} OH (<i>n</i> = 13–31) on Water and Their Role as Ice Nucleators. Chemistry - A European Journal, 1995, 1, 304-311.	1.7	84
130	Structure Determination in the Twilight Region Between Monolayers and 3-D Crystals; a Grazing Incidence X-Ray Diffraction Study of Nanocrystalline Aggregates ofα,ï‰-Docosanediol at the Air–Water Interface. Angewandte Chemie International Edition in English, 1995, 34, 649-652.	4.4	31
131	Influence of ether linkages on the structure of double-chain phospholipid monolayers. Chemistry and Physics of Lipids, 1995, 76, 145-157.	1.5	154
132	X-ray study of the backbone conformation of a comb-shaped polyacrylate with nematic to smectic A phase transitions. Liquid Crystals, 1994, 16, 853-856.	0.9	5
133	Separation of enantiomers in a diol monolayer studied by fluorescence microscopy and grazing incidence X-ray diffraction. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1994, 16, 1487-1492.	0.4	18
134	Influence of a hydrophilic spacer on the structure of a phospholipid monolayer. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1994, 16, 1545-1550.	0.4	9
135	Control of Structure and Growth of Polymorphic Crystalline Thin Films of Amphiphilic Molecules on Liquid Surfaces. Science, 1994, 264, 1566-1570.	6.0	31
136	3DXYbehavior of a nematic-smectic-Aphase transition: Confirmation of the de Gennes model. Physical Review Letters, 1992, 68, 800-803.	2.9	27
137	Fluorescence of gaseous tetraenes and pentaenes. The Journal of Physical Chemistry, 1990, 94, 7429-7434.	2.9	71
138	Laser-induced fluorescence of jet-cooled 7-diethylamino-4-trifluoromethyl coumarin. Chemical Physics Letters, 1988, 145, 71-74.	1.2	6
139	Laser-induced fluorescence spectroscopy of 4-aminobenzonitrile, 4-(N,N-dimethylamino)benzonitrile, and their van der Waals complexes in a supersonic jet. The Journal of Physical Chemistry, 1988, 92, 5449-5455	2.9	71