Imran Nazir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/494840/publications.pdf

Version: 2024-02-01

623734 713466 21 457 14 21 citations h-index g-index papers 21 21 21 405 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics. Advanced Therapeutics, 2022, 5, .	3.2	34
2	Fenugreek seed mucilage grafted poly methacrylate pH-responsive hydrogel: A promising tool to enhance the oral bioavailability of methotrexate. International Journal of Biological Macromolecules, 2022, 202, 332-344.	7.5	14
3	Zeta potential changing nanoemulsions based on a simple zwitterion. Journal of Colloid and Interface Science, 2021, 585, 126-137.	9.4	33
4	Hydrophobic H-bond pairing: A novel approach to improve membrane permeability. International Journal of Pharmaceutics, 2020, 573, 118863.	5.2	14
5	S-Protected thiolated nanostructured lipid carriers exhibiting improved mucoadhesive properties. International Journal of Pharmaceutics, 2020, 587, 119690.	5.2	11
6	Self-Emulsifying Drug Delivery Systems: Hydrophobic Drug Polymer Complexes Provide a Sustained Release in Vitro. Molecular Pharmaceutics, 2020, 17, 3709-3719.	4.6	23
7	Self-emulsifying drug delivery systems: About the fate of hydrophobic ion pairs on a phospholipid bilayer. Journal of Molecular Liquids, 2020, 312, 113382.	4.9	6
8	Self-emulsifying drug delivery systems containing hydrophobic ion pairs of polymyxin B and agaric acid: A decisive strategy for enhanced antimicrobial activity. Journal of Molecular Liquids, 2020, 311, 113298.	4.9	13
9	Tetradeca-thiolated cyclodextrins: Highly mucoadhesive and in-situ gelling oligomers with prolonged mucosal adhesion. International Journal of Pharmaceutics, 2020, 577, 119040.	5.2	22
10	Per-6-Thiolated Cyclodextrins: A Novel Type of Permeation Enhancing Excipients for BCS Class IV Drugs. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7942-7950.	8.0	26
11	About the impact of superassociation of hydrophobic ion pairs on membrane permeability. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 151, 1-8.	4.3	15
12	Zeta potential changing self-emulsifying drug delivery systems utilizing a novel Janus-headed surfactant: A promising strategy for enhanced mucus permeation. Journal of Molecular Liquids, 2019, 291, 111285.	4.9	27
13	Zeta potential changing self-emulsifying drug delivery systems: A promising strategy to sequentially overcome mucus and epithelial barrier. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 40-49.	4.3	38
14	Zeta Potential Changing Polyphosphate Nanoparticles: A Promising Approach To Overcome the Mucus and Epithelial Barrier. Molecular Pharmaceutics, 2019, 16, 2817-2825.	4.6	47
15	Chitosan based micelle with zeta potential changing property for effective mucosal drug delivery. International Journal of Biological Macromolecules, 2019, 133, 647-655.	7. 5	37
16	Self-emulsifying drug delivery systems: Impact of stability of hydrophobic ion pairs on drug release. International Journal of Pharmaceutics, 2019, 561, 197-205.	5 . 2	50
17	In vitro evaluation of intravesical mucoadhesive self-emulsifying drug delivery systems. International Journal of Pharmaceutics, 2019, 564, 180-187.	5.2	11
18	Surface phosphorylation of nanoparticles by hexokinase: A powerful tool for cellular uptake improvement. Journal of Colloid and Interface Science, 2018, 516, 384-391.	9.4	22

#	ARTICLE	IF	CITATION
19	<i>In vitro</i> Evaluation of Nateglinide-Loaded Microspheres Formulated with Biodegradable Polymers. Tropical Journal of Pharmaceutical Research, 2014, 13, 1047.	0.3	9
20	Development of Sustained-Release Microbeads of Nifedipine and <i>In vitro</i> Characterization. Tropical Journal of Pharmaceutical Research, 2014, 13, 505.	0.3	3
21	Fabrication and Characterization of Gliclazide Loaded Microcapsules. Brazilian Archives of Biology and Technology, 2014, 57, 874-881.	0.5	2