William J Pearce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4948285/publications.pdf

Version: 2024-02-01

216 papers 4,764 citations

109264 35 h-index 57 g-index

217 all docs

217 docs citations

217 times ranked

4154 citing authors

#	Article	IF	CITATIONS
1	Endothelial Cilia Are Fluid Shear Sensors That Regulate Calcium Signaling and Nitric Oxide Production Through Polycystin-1. Circulation, 2008, 117, 1161-1171.	1.6	404
2	Core and Penumbral Nitric Oxide Synthase Activity During Cerebral Ischemia and Reperfusion. Stroke, 1998, 29, 1037-1047.	1.0	257
3	The vascular neural networkâ€"a new paradigm in stroke pathophysiology. Nature Reviews Neurology, 2012, 8, 711-716.	4.9	178
4	Neonatal familial type II hyperlipoproteinemia: Cord blood cholesterol in 1800 births. Metabolism: Clinical and Experimental, 1971, 20, 597-608.	1.5	154
5	Gestational Hypoxia and Developmental Plasticity. Physiological Reviews, 2018, 98, 1241-1334.	13.1	123
6	Hypoxic regulation of the fetal cerebral circulation. Journal of Applied Physiology, 2006, 100, 731-738.	1.2	106
7	Chronic cerebrovascular dysfunction after traumatic brain injury. Journal of Neuroscience Research, 2016, 94, 609-622.	1.3	97
8	Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion. Stroke, 1998, 29, 1037-46; discussion 1047.	1.0	97
9	Mechanisms of hypoxic cerebral vasodilatation. , 1995, 65, 75-91.		77
10	Low Dose L-NAME Reduces Infarct Volume in the Rat MCAO/Reperfusion Model. Journal of Neurosurgical Anesthesiology, 1993, 5, 241-249.	0.6	69
11	A new model of neonatal stroke: Reversible middle cerebral artery occlusion in the rat pup. Pediatric Neurology, 1995, 12, 191-196.	1.0	64
12	Animal models of neonatal stroke. Current Opinion in Pediatrics, 2001, 13, 506-516.	1.0	62
13	Recombinant Osteopontin Stabilizes Smooth Muscle Cell Phenotype via Integrin Receptor/Integrin-Linked Kinase/Rac-1 Pathway After Subarachnoid Hemorrhage in Rats. Stroke, 2016, 47, 1319-1327.	1.0	61
14	Male and Female Mice Exhibit Divergent Responses of the Cortical Vasculature to Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 1646-1658.	1.7	59
15	Developmental changes in ovine cerebral artery composition and reactivity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1991, 261, R458-R465.	0.9	54
16	L-NAME Reduces Infarct Volume in a Filament Model of Transient Middle Cerebral Artery Occlusion in the Rat Pup. Pediatric Research, 1995, 38, 652-656.	1.1	53
17	Use of Opioids in Asphyxiated Term Neonates: Effects on Neuroimaging and Clinical Outcome. Pediatric Research, 2005, 57, 873-878.	1.1	53
18	Traumatic brain injury results in acute rarefication of the vascular network. Scientific Reports, 2017, 7, 239.	1.6	53

#	Article	IF	CITATIONS
19	Role of PDGF-D and PDGFR \hat{l}^2 in neuroinflammation in experimental ICH mice model. Experimental Neurology, 2016, 283, 157-164.	2.0	49
20	Role of Nitric Oxide in Hypoxic Cerebral Vasodilatation in the Ovine Fetus. Journal of Physiology, 2003, 549, 625-633.	1.3	48
21	Fetal cerebrovascular acclimatization responses to high-altitude, long-term hypoxia: a model for prenatal programming of adult disease?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R16-R24.	0.9	47
22	MRI Assessment of Ischemic Liver After Intraportal Islet Transplantation. Transplantation, 2009, 87, 825-830.	0.5	47
23	Age-dependent changes in Ca2+homeostasis in peripheral neurones: implications for changes in function. Aging Cell, 2007, 6, 285-296.	3.0	45
24	Up-regulation of Wnt/ \hat{l}^2 -catenin expression is accompanied with vascular repair after traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 274-289.	2.4	45
25	Core and Penumbral Nitric Oxide Synthase Activity during Cerebral Ischemia and Reperfusion in the Rat Pup. Pediatric Research, 1999, 46, 390-390.	1.1	44
26	miR-29c induction contributes to downregulation of vascular extracellular matrix proteins by glucocorticoids. American Journal of Physiology - Cell Physiology, 2015, 309, C117-C125.	2.1	43
27	Cerebrovascular adaptations to high-altitude hypoxemia in fetal and adult sheep. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1993, 264, R65-R72.	0.9	42
28	Regulation of Ca ²⁺ sensitization by PKC and rho proteins in ovine cerebral arteries: effects of artery size and age. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H930-H939.	1.5	41
29	Effect of maternal undernutrition on vascular expression of micro and messenger RNA in newborn and aging offspring. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R1366-R1374.	0.9	41
30	PDGFR-β modulates vascular smooth muscle cell phenotype via IRF-9/SIRT-1/NF-κB pathway in subarachnoid hemorrhage rats. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1369-1380.	2.4	41
31	Endothelium-derived relaxing factor and cyclic GMP-dependent vasorelaxation in human chorionic plate arteries. Placenta, 1994, 15, 365-375.	0.7	38
32	Endothelial nitric oxide release in isolated perfused ovine uterine arteries: effect of pregnancy. European Journal of Pharmacology, 1999, 367, 223-230.	1.7	38
33	Age-dependent modulation of endothelium-dependent vasodilatation by chronic hypoxia in ovine cranial arteries. Journal of Applied Physiology, 2006, 100, 225-232.	1.2	37
34	Inhibition of stress fiber formation preserves blood–brain barrier after intracerebral hemorrhage in mice. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 87-102.	2.4	37
35	MicroRNAs in brain development and cerebrovascular pathophysiology. American Journal of Physiology - Cell Physiology, 2019, 317, C3-C19.	2.1	36
36	The Electroencephalogram, Blood Flow, and Oxygen Uptake in Rabbit Cerebrum. Journal of Cerebral Blood Flow and Metabolism, 1981, 1, 419-428.	2.4	35

#	Article	IF	Citations
37	THE USE OF GORE-TEX?? E-PTFE BONDED TO SILICONE RUBBER AS AN ALLOPLASTIC IMPLANT MATERIAL. Laryngoscope, 1986, 96, 480-483.	1.1	35
38	<i>In vivo</i> imaging demonstrates a timeâ€line for new vessel formation in islet transplantation. Pediatric Transplantation, 2009, 13, 892-897.	0.5	35
39	Fetal Cardiac and Cerebrovascular Acclimatization Responses to High Altitude, Long-term Hypoxia. High Altitude Medicine and Biology, 2003, 4, 203-213.	0.5	33
40	Maturational modulation of endothelium-dependent vasodilatation in ovine cerebral arteries. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R149-R157.	0.9	33
41	High Altitude, Hypoxic-Induced Modulation of Noradrenergic-Mediated Responses in Fetal and Adult Cerebral Arteries. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 1998, 119, 683-694.	0.8	32
42	Maturation depresses cGMP-mediated decreases in [Ca2+]i and Ca2+ sensitivity in ovine cranial arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1019-H1028.	1.5	32
43	Pregnancy enhances endothelium-dependent relaxation of ovine uterine artery: role of NO and intracellular Ca ²⁺ . American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H183-H190.	1.5	32
44	Maturation Alters the Contractile Role of Calcium in Ovine Basilar Arteries. Pediatric Research, 1998, 44, 154-160.	1.1	32
45	Developmental changes in ryanodine- and IP ₃ -sensitive Ca ²⁺ pools in ovine basilar artery. American Journal of Physiology - Cell Physiology, 2001, 281, C1785-C1796.	2.1	31
46	Vascular smooth muscle cells direct extracellular dysregulation in aortic stiffening of hypertensive rats. Aging Cell, 2018, 17, e12748.	3.0	30
47	Ca2+-activated K+ channel-associated phosphatase and kinase activities during development. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H414-H425.	1.5	29
48	Developmental Changes in Thickness, Contractility, and Hypoxic Sensitivity of Newborn Lamb Cerebral Arteries. Pediatric Research, 1987, 22, 192-196.	1.1	28
49	Maturation Enhances the Sensitivity of Ovine Cerebral Arteries to the ATP-Sensitive Potassium Channel Activator Lemakalim. Pediatric Research, 1994, 35, 729-732.	1.1	28
50	Effects of Maturation on Cyclic GMP-Dependent Vasodilation in Ovine Basilar and Carotid Arteries. Pediatric Research, 1994, 36, 25-33.	1.1	28
51	Long-Term Maternal Hypoxia. Reproductive Sciences, 2011, 18, 948-962.	1.1	28
52	Developmental changes in alpha 1-adrenergic receptors, IP3 responses, and NE-induced contraction in cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 1996, 271, H2313-H2319.	1.5	27
53	Effects of maturation, artery size, and chronic hypoxia on 5-HT receptor type in ovine cranial arteries. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R742-R753.	0.9	27
54	Chronic hypoxia alters the function of NOS nerves in cerebral arteries of near-term fetal and adult sheep. Journal of Applied Physiology, 2003, 94, 724-732.	1.2	27

#	Article	IF	CITATIONS
55	Developmental differences in Ca2+-activated K+ channel activity in ovine basilar artery. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H701-H709.	1.5	27
56	Modulation of BK channel calcium affinity by differential phosphorylation in developing ovine basilar artery myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H732-H740.	1.5	26
57	Developmental aspects of endothelial function. Seminars in Perinatology, 1991, 15, 40-8.	1.1	26
58	NE-induced contraction, alpha 1-adrenergic receptors, and Ins(1,4,5)P3 responses in cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 1996, 270, H915-H923.	1.5	25
59	Effects of nitric oxide and GABA interaction within ventrolateral medulla on cardiovascular responses during static muscle contraction. Brain Research, 2001, 922, 234-242.	1.1	25
60	ERK-mediated uterine artery contraction: role of thick and thin filament regulatory pathways. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1615-H1622.	1.5	25
61	Chronic hypoxia modulates relations among calcium, myosin light chain phosphorylation, and force differently in fetal and adult ovine basilar arteries. Journal of Applied Physiology, 2005, 99, 120-127.	1.2	25
62	Chronic hypoxia and VEGF differentially modulate abundance and organization of myosin heavy chain isoforms in fetal and adult ovine arteries. American Journal of Physiology - Cell Physiology, 2012, 303, C1090-C1103.	2.1	25
63	Maturation depresses mouse cerebrovascular tone through endothelium-dependent mechanisms. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R734-R741.	0.9	24
64	Direct effects of graded hypoxia on intact and denuded rabbit cranial arteries. American Journal of Physiology - Heart and Circulatory Physiology, 1989, 257, H824-H833.	1.5	22
65	Hypoxia inhibits calcium influx in rabbit basilar and carotid arteries. American Journal of Physiology - Heart and Circulatory Physiology, 1992, 262, H106-H113.	1.5	22
66	Maturation Modulates Serotonin- and Potassium-Induced Calcium-45 Uptake in Ovine Carotid and Cerebral Arteries. Pediatric Research, 1995, 38, 493-500.	1.1	22
67	Physiological variations in ovine cerebrovascular calcium sensitivity. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 272, H2271-H2281.	1.5	22
68	Chronic hypoxic decreases in soluble guanylate cyclase protein and enzyme activity are age dependent in fetal and adult ovine carotid arteries. Journal of Applied Physiology, 2006, 100, 1857-1866.	1.2	22
69	Hemorrhage-induced cerebral vasoconstriction in dogs Stroke, 1980, 11, 190-197.	1.0	21
70	Developmental Changes in the Calcium Sensitivity of Rabbit Cranial Arteries. Neonatology, 1998, 74, 60-71.	0.9	21
71	Advancing age alters rapid and spontaneous refilling of caffeine-sensitive calcium stores in sympathetic superior cervical ganglion cells. Journal of Applied Physiology, 2005, 99, 963-971.	1.2	21
72	Effects of chronic hypoxia on soluble guanylate cyclase activity in fetal and adult ovine cerebral arteries. Journal of Applied Physiology, 2009, 107, 192-199.	1,2	21

#	Article	IF	Citations
73	Effect of chronic hypoxia on alpha-1 adrenoceptor-mediated inositol 1,4,5-trisphosphate signaling in ovine uterine artery. Journal of Pharmacology and Experimental Therapeutics, 1999, 288, 977-83.	1.3	21
74	Differential cerebrovascular and metabolic responses in specific neural systems elicited from the centromedian-parafascicular complex. Neuroscience, 1992, 49, 451-466.	1.1	20
75	Effects of maturation on cell water, protein, and DNA content in ovine cerebral arteries. Journal of Applied Physiology, 1995, 79, 831-837.	1.2	20
76	Contributions of VEGF to age-dependent transmural gradients in contractile protein expression in ovine carotid arteries. American Journal of Physiology - Cell Physiology, 2011, 301, C653-C666.	2.1	20
77	Contribution of increased VEGF receptors to hypoxic changes in fetal ovine carotid artery contractile proteins. American Journal of Physiology - Cell Physiology, 2013, 304, C656-C665.	2.1	20
78	Vasotrophic Regulation of Age-Dependent Hypoxic Cerebrovascular Remodeling. Current Vascular Pharmacology, 2013, 11, 544-563.	0.8	20
79	Effects of methylene blue on hypoxic cerebral vasodilatation in the rabbit. Journal of Pharmacology and Experimental Therapeutics, 1990, 254, 616-25.	1.3	20
80	Maturation enhances fluid shear-induced activation of eNOS in perfused ovine carotid arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2220-H2227.	1.5	19
81	Advancing age alters the expression of the ryanodine receptor 3 isoform in adult rat superior cervical ganglia. Journal of Applied Physiology, 2006, 101, 392-400.	1.2	19
82	Endothelial glucocorticoid receptor promoter methylation according to dexamethasone sensitivity. Journal of Molecular Endocrinology, 2015, 55, 133-146.	1.1	19
83	A Novel Technique for Visualizing and Analyzing the Cerebral Vasculature in Rodents. Translational Stroke Research, 2019, 10, 216-230.	2.3	19
84	Acute hypoxia modulates 5-HT receptor density and agonist affinity in fetal and adult ovine carotid arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H502-H510.	1.5	18
85	Effect of cortisol on norepinephrine-mediated contractions in ovine uterine arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1142-H1151.	1.5	18
86	Maternal food restriction modulates cerebrovascular structure and contractility in adult rat offspring: effects of metyrapone. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R401-R410.	0.9	18
87	Long-term effects of maternal undernutrition on offspring carotid artery remodeling: role of miR-29c. Journal of Developmental Origins of Health and Disease, 2015, 6, 342-349.	0.7	18
88	Platelet-Derived Growth Factor Receptor- \hat{l}^2 Regulates Vascular Smooth Muscle Cell Phenotypic Transformation and Neuroinflammation After Intracerebral Hemorrhage in Mice. Critical Care Medicine, 2016, 44, e390-e402.	0.4	18
89	Maturational Differences in Soluble Guanylate Cyclase Activity in Ovine Carotid and Cerebral Arteries. Pediatric Research, 2000, 47, 369-375.	1.1	18
90	Maturation alters the contribution of potassium channels to resting and 5HT-induced tone in small cerebral arteries of the sheep. Developmental Brain Research, 2002, 133, 81-91.	2.1	17

#	Article	IF	CITATIONS
91	Postnatal maturation modulates relationships among cytosolic Ca ²⁺ , myosin light chain phosphorylation, and contractile tone in ovine cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2183-H2192.	1.5	17
92	Roles of cytosolic Ca ²⁺ concentration and myofilament Ca ²⁺ sensitization in age-dependent cerebrovascular myogenic tone. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1034-H1044.	1.5	17
93	Maturation and Differentiation of the Fetal Vasculature. Clinical Obstetrics and Gynecology, 2013, 56, 537-548.	0.6	17
94	Excess Maternal Glucocorticoids in Response to In Utero Undernutrition Inhibit Offspring Angiogenesis. Reproductive Sciences, 2014, 21, 601-611.	1.1	17
95	Cardiac \hat{l}^2 -adrenergic receptor function in fetal sheep exposed to long-term high-altitude hypoxemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R2022-R2031.	0.9	16
96	Effects of maturation on adrenergic neurotransmission in ovine cerebral arteries. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R931-R937.	0.9	16
97	Ca2+ Sensitivity of Fetal Coronary Arteries Exposed to Long-Term, High-Altitude Hypoxia. Journal of the Society for Gynecologic Investigation, 2000, 7, 161-166.	1.9	16
98	Expression of several cytoskeletal proteins in ovine cerebral arteries: developmental and functional considerations. Journal of Physiology, 2004, 558, 623-632.	1.3	16
99	Maximal stimulation-induced in situ myosin light chain kinase activity is upregulated in fetal compared with adult ovine carotid arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H2289-H2298.	1.5	16
100	Role of the Sympathetic Autonomic Nervous System in Hypoxic Remodeling of the Fetal Cerebral Vasculature. Journal of Cardiovascular Pharmacology, 2015, 65, 308-316.	0.8	16
101	Fetal Cerebrovascular Maturation: Effects of Hypoxia. Seminars in Pediatric Neurology, 2018, 28, 17-28.	1.0	16
102	Simultaneous glutamate and \hat{l}^3 -aminobutyric acid release within ventrolateral medulla during skeletal muscle contraction in intact and barodenervated rats. Brain Research, 2001, 923, 137-146.	1.1	15
103	Fetal Cerebral Oxygenation: The Homeostatic Role of Vascular Adaptations to Hypoxic Stress. Advances in Experimental Medicine and Biology, 2011, 701, 225-232.	0.8	15
104	Effects of maturation on alpha-adrenergic receptor affinity and occupancy in small cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 1994, 267, H757-H763.	1.5	14
105	ERK Inhibition Attenuates 5-HT-Induced Contractions in Fetal and Adult Ovine Carotid Arteries. Archives of Physiology and Biochemistry, 2003, 111, 36-44.	1.0	14
106	Acute intranasal osteopontin treatment in male rats following TBI increases the number of activated microglia but does not alter lesion characteristics. Journal of Neuroscience Research, 2020, 98, 141-154.	1.3	14
107	Effects of hypoxia on contractility of isolated fetal lamb cerebral arteries. Journal of Developmental Physiology, 1990, 13, 199-203.	0.3	14
108	Noradrenaline-mediated contractions of ovine uterine artery: role of inositol 1,4,5-trisphosphate. European Journal of Pharmacology, 1995, 289, 375-382.	2.7	13

#	Article	IF	CITATIONS
109	Maturation attenuates the effects of cGMP on contraction, [Ca2+]i and Ca2+ sensitivity in ovine basilar arteries. General Pharmacology, 2000, 35, 107-118.	0.7	13
110	Effects of opioid receptor activation on cardiovascular responses and extracellular monoamines within the rostral ventrolateral medulla during static contraction of skeletal muscle. Neuroscience Research, 2001, 41, 373-383.	1.0	13
111	Maturation Alters Cyclic Nucleotide and Relaxation Responses to Nitric Oxide Donors in Ovine Cerebral Arteries. Neonatology, 2003, 83, 123-135.	0.9	13
112	Role of Prostanoids in the Regulation of Cerebral Blood Flow During Normoxia and Hypoxia in the Fetal Sheep. Pediatric Research, 2006, 60, 524-529.	1.1	13
113	Postnatal maturation attenuates pressure-evoked myogenic tone and stretch-induced increases in Ca2+ in rat cerebral arteries. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R737-R744.	0.9	13
114	Preservation of Serotonin-Mediated Contractility in Adult Sheep Pulmonary Arteries Following Long-Term High-Altitude Hypoxia. High Altitude Medicine and Biology, 2011, 12, 253-264.	0.5	13
115	VEGF receptors mediate hypoxic remodeling of adult ovine carotid arteries. Journal of Applied Physiology, 2014, 117, 777-787.	1.2	13
116	Chronic hypoxia attenuates the vasodilator efficacy of protein kinase G in fetal and adult ovine cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H207-H219.	1.5	13
117	Effects of maturation and acute hypoxia on receptor-IP3 coupling in ovine common carotid arteries. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R410-R417.	0.9	12
118	Imatinib attenuates cerebrovascular injury and phenotypic transformation after intracerebral hemorrhage in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R1093-R1104.	0.9	12
119	Developmental acceleration of bradykinin-dependent relaxation by prenatal chronic hypoxia impedes normal development after birth. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L271-L286.	1.3	12
120	Chronic Hypoxia Modulates Endothelium-Dependent Vasorelaxation Through Multiple Independent Mechanisms in Ovine Cranial Arteries., 2006, 578, 87-92.		12
121	Effects of Maturation on Cyclic GMP Metabolism in Ovine Carotid Arteries. Pediatric Research, 1996, 39, 25-31.	1.1	12
122	Intracranial-Extracranial Differences in the Ca2+ Sensitivity of Rabbit Arteries. Experimental Biology and Medicine, 1997, 214, 76-82.	1.1	11
123	Role of BCL2-Associated Athanogene 1 in Differential Sensitivity of Human Endothelial Cells to Glucocorticoids. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1046-1055.	1.1	11
124	Recanalization, reperfusion, and recirculation in stroke. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3818-3823.	2.4	11
125	Regulation of baseline Ca2+ sensitivity in permeabilized uterine arteries: effect of pregnancy. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H413-H420.	1.5	10
126	Epigenetics: an Expanding New Piece of the Stroke Puzzle. Translational Stroke Research, 2011, 2, 243-247.	2.3	10

#	Article	IF	CITATIONS
127	Pregnancy-induced changes in ovine cerebral arteries. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1992, 262, R137-R143.	0.9	9
128	Myogenic contractility is more dependent on myofilament calcium sensitization in term fetal than adult ovine cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H548-H556.	1.5	9
129	Vitamin D status and metabolism in an ovine pregnancy model: effect of long-term, high-altitude hypoxia. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E1062-E1071.	1.8	9
130	Chronic hypoxia alters fetal cerebrovascular responses to endothelin-1. American Journal of Physiology - Cell Physiology, 2017, 313, C207-C218.	2.1	9
131	Diltiazem and autoregulation of canine cerebral blood flow. Journal of Pharmacology and Experimental Therapeutics, 1987, 242, 812-7.	1.3	9
132	Maturational Modification of Hypoxic Relaxation in Ovine Carotid and Cerebral Arteries: Role of Endothelium. Neonatology, 1998, 74, 222-232.	0.9	8
133	Maturation and long-term hypoxia alters Ca ²⁺ -induced Ca ²⁺ release in sheep cerebrovascular sympathetic neurons. Journal of Applied Physiology, 2009, 107, 1223-1234.	1.2	8
134	Long-term hypoxia uncouples Ca ²⁺ and eNOS in bradykinin-mediated pulmonary arterial relaxation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R870-R882.	0.9	8
135	Hypoxic depression of PKG-mediated inhibition of serotonergic contraction in ovine carotid arteries. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R734-R743.	0.9	7
136	Cardiovascular Responses During Stimulation Of Hindlimb Skeletal Muscle Nerves In Anaesthetized Rats. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 689-695.	0.9	6
137	Chronic Hypobaric Hypoxia Modulates Primary Cilia Differently in Adult and Fetal Ovine Kidneys. Frontiers in Physiology, 2017, 8, 677.	1.3	6
138	Specialization in cerebral and extracerebral neurovascular mechanisms. Federation Proceedings, 1981, 40, 2301-5.	1.3	6
139	Mechanisms of platelet-induced angiospastic reactions: potentiation of calcium sensitivity. Canadian Journal of Physiology and Pharmacology, 1997, 75, 849-852.	0.7	5
140	Modulation of pressor response to muscle contraction via monoamines following AMPA-receptor blockade in the ventrolateral medulla. Pharmacological Research, 2001, 44, 481-489.	3.1	5
141	Dexamethasone Alters Vascular Reactivity by Enhancing COX-Related Vasodilatation in Fetal Ovine Carotids. Neonatology, 2006, 90, 1-8.	0.9	5
142	Retroglenoid Venoconstriction and its Influence on Canine Intracranial Venous Pressures. Journal of Cerebral Blood Flow and Metabolism, 1984, 4, 373-380.	2.4	4
143	Maturation alters cerebral NOS kinetics in the spontaneously hypertensive rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R1367-R1373.	0.9	4
144	Advancing Age Alters the Contribution of Calcium Release From Smooth Endoplasmic Reticulum Stores in Superior Cervical Ganglion Cells. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 34-44.	1.7	4

#	Article	IF	CITATIONS
145	SYMPATHETIC STIMULATION, CEREBRAL BLOOD FLOW AND THE ROLE OF EXTRACEREBRAL VENOCONSTRICTION., 1981,, 269-278.		4
146	Ca2+ sensitivity of fetal coronary arteries exposed to long-term, high-altitude hypoxia. Journal of the Society for Gynecologic Investigation, 2000, 7, 161-166.	1.9	4
147	Fetal and newborn cerebral vascular responses and adaptations to hypoxia. Seminars in Perinatology, 1991, 15, 49-57.	1.1	4
148	Analytical Diagnostic Peritoneal Lavage in the Diagnosis of Intra-abdominal Injury. Journal of Trauma, 1985, 25, 400-404.	2.3	3
149	Effects of Maturation on Mechanisms of cGMP-Induced Cerebral Vasodilatation. Developmental Neuroscience, 2001, 23, 224-233.	1.0	3
150	Multifunctional angiogenic factors: add GnRH to the list. Focus on "Gonadotropin-releasing hormone-regulated chemokine expression in human placentation― American Journal of Physiology - Cell Physiology, 2009, 297, C4-C5.	2.1	3
151	In cerebrovascular circadian rhythms, EETs keep the beat. Focus on "Rhythmic expression of cytochrome P450 epoxygenases CYP4x1 and CYP2c11 in the rat brain and vasculature― American Journal of Physiology - Cell Physiology, 2014, 307, C986-C988.	2.1	3
152	Temporal evolution of heme oxygenase-1 expression in reactive astrocytes and microglia in response to traumatic brain injury. Brain Hemorrhages, 2020, 1, 65-74.	0.4	3
153	Hypoxic modulation of fetal vascular MLCK abundance, localization, and function. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R1-R18.	0.9	3
154	Maternal Undernutrition Modulates Neonatal Rat Cerebrovascular Structure, Function, and Vulnerability to Mild Hypoxic-Ischemic Injury via Corticosteroid-Dependent and -Independent Mechanisms. International Journal of Molecular Sciences, 2021, 22, 680.	1.8	3
155	The Fetal Cerebral Circulation: Three Decades of Exploration by the LLU Center for Perinatal Biology. Advances in Experimental Medicine and Biology, 2014, 814, 177-191.	0.8	3
156	Hypoxia increases cGMP and decreases calcium uptake in rabbit cranial arteries. Proceedings of the Western Pharmacology Society, 1988, 31, 125-8.	0.1	3
157	Pregnancy alters cerebrovascular adaptation to high-altitude hypoxia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1994, 266, R765-R772.	0.9	2
158	Effect of Dopamine on Vascular Reactivity in Near-Term Lamb Carotids: Role of the Endothelium. Biological Research for Nursing, 2006, 8, 97-103.	1.0	2
159	Cerebrovascular effects of ischemic preconditioning: endothelial survivin joins the fray. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2559-H2560.	1.5	2
160	Hypoxia Promotes the Release of Both Relaxing and Contracting Factors from the Endothelium of Isolated Cerebral Arteries., 1990,, 20-31.		1
161	Basic and translational neonatal neuroscience research: whither goest the future of physician-scientists?. Journal of Perinatology, 2006, 26, S23-S29.	0.9	1
162	For myosin light chain phosphatase, a very small subunit can make very big differences in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H1157-H1159.	1.5	1

#	Article	IF	CITATIONS
163	Prenatal metyrapone treatment modulates neonatal cerebrovascular structure, function, and vulnerability to mild hypoxic-ischemic injury. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R1-R16.	0.9	1
164	Acute Treatment With Gleevec Does Not Promote Early Vascular Recovery Following Intracerebral Hemorrhage in Adult Male Rats. Frontiers in Neuroscience, 2020, 14, 46.	1.4	1
165	Postnatal development alters functional compartmentalization of myosin light chain kinase in ovine carotid arteries. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R441-R453.	0.9	1
166	GENERATION OF MYOGENIC TONE REQUIRES RELEASE OF CALCIUM IN RAT CEREBRAL ARTERIES. FASEB Journal, 2007, 21, A1386.	0.2	1
167	Normotensive hemorrhage and cerebral blood flow. Acta Neurologica Scandinavica, Supplement, 1977, 64, 44-5.	0.7	1
168	Chronic hypoxia alters ovine cerebrovascular reactivity and composition. Proceedings of the Western Pharmacology Society, 1991, 34, 233-8.	0.1	1
169	Pregnancy-induced changes in ovine cerebrovascular reactivity and composition. Proceedings of the Western Pharmacology Society, 1991, 34, 239-45.	0.1	1
170	Effects of maturation on ovine cerebrovascular function. Proceedings of the Western Pharmacology Society, 1991, 34, 247-54.	0.1	1
171	Role of endothelial relaxing and contracting factors in rabbit cranial artery responses to hypoxia. Proceedings of the Western Pharmacology Society, 1989, 32, 239-45.	0.1	1
172	Developmental contractility changes in ovine peripheral cerebral arteries. Proceedings of the Western Pharmacology Society, 1993, 36, 63-70.	0.1	1
173	Maturation and hypoxia influence the calcium dose response relationship in ovine cerebral arteries. Proceedings of the Western Pharmacology Society, 1993, 36, 71-5.	0.1	1
174	Mechanisms of cGMP-induced cerebral vasodilatation: contractile agonist and developmental age make a difference. International Congress Series, 2002, 1235, 379-393.	0.2	0
175	Development and Function of the Cerebrovascular System. , 2017, , 841-847.		0
176	A path well travelled may lead to better stroke recovery. Acta Physiologica, 2018, 223, e13061.	1.8	0
177	Myogenic stretch of ovine cerebral arteries induces both MLC phosphorylation and thin-filament activation in an age-dependent manner. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S203-S203.	2.4	0
178	MATURATION ALTERS CALCIUM DEPENDENT SENSITIVITYOFPRESSUREDEPENDENT CEREBROVASCULAR MYOGENIC TONE. FASEB Journal, 2006, 20, A296.	0.2	0
179	Chronic hypoxia and the influence of maturation on serotonergic contractility in Ovine pulmonary arteries. FASEB Journal, 2007, 21, A1339.	0.2	0
180	Advancing age alters the contribution of release of calcium from internal stores to stimulationâ€evoked calcium transients. FASEB Journal, 2007, 21, A1350.	0.2	0

#	Article	IF	CITATIONS
181	Chronic hypoxia and postnatal maturation alter isoform expression and specific activity of protein kinase G in ovine carotid arteries. FASEB Journal, 2007, 21, .	0.2	O
182	Postnatal maturation increases the abundance, but decreases the specific activity, of MLCK in ovine carotids. FASEB Journal, 2007, 21, A518.	0.2	0
183	MYOGENIC TONE IN JUVENILE RAT MCA IS RESISTANT TO BLOCKADE OF CALCIUM INFLUX AND RELEASE OF INTRACELLULAR CALCIUM. FASEB Journal, 2008, 22, 913.3.	0.2	0
184	Serotonin mediated Ca2+ events are reduced in pulmonary arterial myocytes of chronic hypoxic fetal sheep. FASEB Journal, 2008, 22, 1149.1.	0.2	0
185	Competing Effects Among Protein Kinase G, Chronic Hypoxia, and Postnatal Maturation on 5HT Agonist Affinity in Ovine Carotid Cerebral Arteries. FASEB Journal, 2008, 22, 913.7.	0.2	0
186	Role of reverseâ€mode sodiumâ€calcium exchange to serotonergic contractility in pulmonary arteries of hypoxic sheep. FASEB Journal, 2008, 22, 1150.1.	0.2	0
187	5â€HT2A receptor mediated contractility of Ovine pulmonary arteries: Effects of maturation and chronic hypoxia. FASEB Journal, 2008, 22, 1150.4.	0.2	0
188	Differential regulation of Protein Kinase G activity by chronic hypoxia and maturation in fetal and adult ovine cerebral arteries. FASEB Journal, 2008, 22, 1151.26.	0.2	0
189	Amino acid sequence and phosphorylation status of myosin light chain MLC20 during vascular smooth muscle cell maturation. FASEB Journal, 2008, 22, 963.6.	0.2	0
190	IMPACT OF ADVANCING AGE ON CAFFEINE MEDIATED SENSITIZATION OF CALCIUM RELEASE IN SUPERIOR CERVICAL GANGLION CELLS FASEB Journal, 2008, 22, 1126.7.	0.2	0
191	Contributions of PKC, RhoA and ERK signaling to serotonergic contractility of pulmonary arteries from chronic hypoxic fetal and adult sheep. FASEB Journal, 2008, 22, 1150.3.	0.2	0
192	Acetylcholine receptorâ€mediated contractility of ovine pulmonary arteries: Changes with maturation and chronic hypoxia. FASEB Journal, 2008, 22, 1150.6.	0.2	0
193	Role of calcium to serotonergic mediated contractility in ovine pulmonary arteries: effects of maturation and chronic hypoxia. FASEB Journal, 2008, 22, .	0.2	0
194	The role of calciumâ€activated chloride channels to serotoninâ€mediated pulmonary arterial tone is influenced by postnatal maturation. FASEB Journal, 2009, 23, 999.1.	0.2	0
195	Serotoninâ€mediated Ca2+ signaling in pulmonary arterial myocytes and the combined influence of maturation and highâ€altitude exposure. FASEB Journal, 2009, 23, 619.11.	0.2	0
196	Expression of low abundance isoforms of regulatory myosin light chain validated by a novel scoring algorithm for protein isoforms correlates with vascular maturation. FASEB Journal, 2009, 23, 809.2.	0.2	0
197	Roles of PKC, RhoA and ERK signaling to serotonergic contractility of pulmonary arteries from chronic hypoxic fetal and adult sheep. FASEB Journal, 2009, 23, 619.5.	0.2	0
198	Changes in pulmonary arterial smooth muscle structure with maturation and chronic hypoxia in sheep. FASEB Journal, 2009, 23, 619.9.	0.2	0

#	Article	IF	Citations
199	Phenotypic differences between neonatal and adult ovine carotid arteries predict reactivity to chronic hypoxia and VEGF. FASEB Journal, 2010, 24, 980.8.	0.2	0
200	VEGF contributes to hypoxic vascular remodeling of ovine carotid arteries. FASEB Journal, 2011, 25, 1091.13.	0.2	0
201	Chronic hypoxia modulates effects of VEGF receptors on structure and function in ovine common carotid arteries. FASEB Journal, 2011, 25, 1091.16.	0.2	0
202	VEGFâ€Induced Ageâ€Dependent Contractile Protein Gradients in Ovine Carotid Arteries. FASEB Journal, 2011, 25, 1091.15.	0.2	0
203	Sympathetic perivascular nerves mediate remodeling effects of chronic hypoxia in fetal sheep cerebral arteries. FASEB Journal, 2012, 26, 685.1.	0.2	0
204	Sympathetic perivascular nerves contribute to hypoxic transformation of smooth muscle phenotype in ovine cerebral arteries. FASEB Journal, 2013, 27, 700.4.	0.2	0
205	Chronic hypoxia promotes preferential loss of MLCK not associated with MLC in fetal lamb arteries (700.7). FASEB Journal, 2014, 28, 700.7.	0.2	0
206	Chronic hypoxia differentially modulates the response of fetal ovine middle cerebral arteries to endothelinâ€1 (853.2). FASEB Journal, 2014, 28, 853.2.	0.2	0
207	NPY Å' a regulator of hypoxic cerebrovascular remodeling in fetal lambs (853.4). FASEB Journal, 2014, 28, 853.4.	0.2	0
208	Role of sympathetic innervation on cerebral artery remodeling during chronic hypoxia in fetal lambs (853.3). FASEB Journal, 2014, 28, 853.3.	0.2	0
209	Chronic Hypoxia Attenuates cGMPâ€dependent protein kinase (PKG)â€Mediated Vasorelaxation by Depressing BK Potassium Channel Activity in Cerebral Arteries. FASEB Journal, 2015, 29, 948.7.	0.2	0
210	Hypoxic Remodeling of Fetal Cerebral Arteries Involves The NPY/Y1 Pathway. FASEB Journal, 2015, 29, 949.6.	0.2	0
211	Maturation Decreases Fractional Activation of Myosin Light Chain Kinase in Ovine Common Carotid Arteries. FASEB Journal, 2015, 29, 1052.7.	0.2	0
212	Chronic Hypoxia Modulates Endothelial Influences on Smooth Muscle Phenotype in Fetal Cerebral Arteries. FASEB Journal, 2015, 29, .	0.2	0
213	Mechanisms of hypoxic relaxation in isolated cerebral arteries: the effects of extracellular calcium concentration. Proceedings of the Western Pharmacology Society, 1986, 29, 199-202.	0.1	0
214	The role of membrane hyperpolarization in the direct effects of hypoxia on isolated cerebral arteries. Proceedings of the Western Pharmacology Society, 1985, 28, 131-4.	0.1	0
215	Determination of the cyclic GMP concentration yielding half-maximal activation of cyclic GMP-dependent protein kinase in intact ovine basilar arteries. Proceedings of the Western Pharmacology Society, 1995, 38, 55-8.	0.1	0
216	Mechanisms of platelet-induced angiospastic reactions: potentiation of calcium sensitivity. Canadian Journal of Physiology and Pharmacology, 1997, 75, 849-52.	0.7	0