Johannes Schnaidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/494826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electro-Oxidation of Ethylene Glycol on a Pt-Film Electrode Studied by Combined in Situ Infrared Spectroscopy and Online Mass Spectrometry. Journal of Physical Chemistry C, 2012, 116, 2872-2883.	3.1	42
2	A combined UHV-STM-flow cell set-up for electrochemical/electrocatalytic studies of structurally well-defined UHV prepared model electrodes. Physical Chemistry Chemical Physics, 2017, 19, 4166-4178.	2.8	42
3	Oxidation of the Partly Oxidized Ethylene Glycol Oxidation Products Glycolaldehyde, Glyoxal, Glycolic Acid, Glyoxylic Acid, and Oxalic Acid on Pt Electrodes: A Combined ATR-FTIRS and DEMS Spectroelectrochemical Study. Journal of Physical Chemistry C, 2013, 117, 12689-12701.	3.1	37
4	Oxygen Reduction and Evolution on Niâ€nodified Co ₃ O ₄ (1 1 1) Cathodes for Zn–Air Batteries: A Combined Surface Science and Electrochemical Model Study. ChemSusChem, 2020, 13, 3199-3211.	6.8	31
5	Oxygen reduction and evolution in an ionic liquid ([BMP][TFSA]) based electrolyte: A model study of the cathode reactions in Mg-air batteries. Journal of Power Sources, 2016, 333, 173-183.	7.8	30
6	A Novel Approach for Differential Electrochemical Mass Spectrometry Studies on the Decomposition of Ionic Liquids. Electrochimica Acta, 2016, 197, 290-299.	5.2	23
7	Electrooxidation of 1-Propanol on Pt — Mechanistic Insights from a Spectro-Electrochemical Study using Isotope Labeling. Journal of Physical Chemistry C, 2012, 116, 25852-25867.	3.1	20
8	Model Studies on the Solid Electrolyte Interphase Formation on Graphite Electrodes in Ethylene Carbonate and Dimethyl Carbonate: Highly Oriented Pyrolytic Graphite. ChemElectroChem, 2019, 6, 4985-4997.	3.4	14
9	Surface Science and Electrochemical Model Studies on the Interaction of Graphite and Liâ€Containing Ionic Liquids. ChemSusChem, 2020, 13, 2589-2601.	6.8	12
10	lonic Liquid Electrolytes for Metal-Air Batteries: Interactions between O ₂ , Zn ²⁺ and H ₂ O Impurities. Journal of the Electrochemical Society, 2020, 167, 070505.	2.9	11
11	Electrocatalytic Oxygen Reduction and Oxygen Evolution in Mgâ€Free and Mg–Containing Ionic Liquid 1â€Butylâ€1â€Methylpyrrolidinium Bis (Trifluoromethanesulfonyl) Imide. ChemElectroChem, 2018, 5, 2600-2611.	3.4	10
12	Effect of Li + and Mg 2+ on the Electrochemical Decomposition of the Ionic Liquid 1â€Butylâ€1― methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and Related Electrolytes. ChemElectroChem, 2019, 6, 3009-3019.	3.4	10
13	Influence of Complexing Additives on the Reversible Deposition/Dissolution of Magnesium in an Ionic Liquid. ChemElectroChem, 2021, 8, 390-402.	3.4	10
14	O2 reduction on a Au film electrode in an ionic liquid in the absence and presence of Mg2+ ions: Product formation and adlayer dynamics. Journal of Chemical Physics, 2019, 150, 041724.	3.0	9
15	Model Studies on Solid Electrolyte Interphase Formation on Graphite Electrodes in Ethylene Carbonate and Dimethyl Carbonate II: Graphite Powder Electrodes. ChemElectroChem, 2020, 7, 4794-4809.	3.4	8
16	How many electrons are transferred during the electrochemical O2 reduction in a Mg2+-free / Mg2+-containing ionic liquid?. Electrochimica Acta, 2019, 299, 372-377.	5.2	7
17	Influence of Additives on the Reversible Oxygen Reduction Reaction/Oxygen Evolution Reaction in the Mg 2+ â€Containing Ionic Liquid N â€Butyl―N â€Methylpyrrolidinium Bis(Trifluoromethanesulfonyl)imide. ChemSusChem, 2020, 13, 3919-3927.	6.8	6
18	Surface chemistry and electrochemistry of an ionic liquid and lithium on Li4Ti5O12(111)—A model study of the anode electrolyte interface. Journal of Chemical Physics, 2019, 151, 134704.	3.0	4