Sheng-Li Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4948201/publications.pdf

Version: 2024-02-01

394286 526166 1,266 27 19 27 citations h-index g-index papers 27 27 27 1016 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Nobleâ€Metalâ€Free Metal–Organic Framework (MOF) Catalyst for the Highly Efficient Conversion of CO ₂ with Propargylic Alcohols. Angewandte Chemie - International Edition, 2019, 58, 577-581.	7.2	140
2	Interpenetration-Dependent Luminescent Probe in Indium-Organic Frameworks for Selectively Detecting Nitrofurazone in Water. Analytical Chemistry, 2018, 90, 1516-1519.	3.2	137
3	Metal–Organic Frameworks with Tb ₄ Clusters as Nodes: Luminescent Detection of Chromium(VI) and Chemical Fixation of CO ₂ . Inorganic Chemistry, 2017, 56, 6244-6250.	1.9	109
4	Formation of CX Bonds in CO ₂ Chemical Fixation Catalyzed by Metalâ^'Organic Frameworks. Advanced Materials, 2020, 32, e1806163.	11.1	102
5	Stable Lanthanide–Organic Framework as a Luminescent Probe To Detect Both Histidine and Aspartic Acid in Water. Inorganic Chemistry, 2019, 58, 6356-6362.	1.9	80
6	Bimetallic Lanthanide-Organic Framework Membranes as a Self-Calibrating Luminescent Sensor for Rapidly Detecting Antibiotics in Water. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38124-38131.	4.0	72
7	Triple-Interpenetrated Lanthanide-Organic Framework as Dual Wave Bands Self-Calibrated pH Luminescent Probe. Analytical Chemistry, 2019, 91, 5455-5460.	3.2	70
8	Highly Sensitive and Selective Luminescence Sensor Based on Two-Fold Interpenetrated MOFs for Detecting Glutamate in Serum. Inorganic Chemistry, 2020, 59, 2171-2177.	1.9	64
9	A Facile Strategy for Constructing a Carbonâ€Particleâ€Modified Metal–Organic Framework for Enhancing the Efficiency of CO ₂ Electroreduction into Formate. Angewandte Chemie - International Edition, 2021, 60, 23394-23402.	7.2	58
10	Luminescent Detection of Colchicine by a Unique Indium–Organic Framework in Water with High Sensitivity. Analytical Chemistry, 2019, 91, 9754-9759.	3.2	46
11	Green Conversion of CO ₂ and Propargylamines Triggered by Triply Synergistic Catalytic Effects in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 20417-20423.	7.2	43
12	Selectively detecting toluene and benzaldehyde by two stable lanthanide–organic frameworks as luminescent probes. Dalton Transactions, 2019, 48, 3453-3458.	1.6	42
13	Recyclable Luminescence Sensor for Dinotefuran in Water by Stable Cadmium–Organic Framework. Analytical Chemistry, 2021, 93, 6599-6603.	3.2	35
14	Selectively Regulating Lewis Acidâ€"Base Sites in Metalâ€"Organic Frameworks for Achieving Turnâ€On/Off of the Catalytic Activity in Different CO ₂ Reactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
15	Efficient Cycloaddition of CO ₂ and Aziridines Activated by a Quadruple-Interpenetrated Indium–Organic Framework as a Recyclable Catalyst. Inorganic Chemistry, 2021, 60, 15383-15389.	1.9	29
16	Anchoring Ag(I) into Nitro-Functionalized Metal–Organic Frameworks: Effectively Catalyzing Cycloaddition of CO ₂ with Propargylic Alcohols under Mild Conditions. ACS Applied Materials & Diterfaces, 2021, 13, 45558-45565.	4.0	29
17	A Nobleâ€Metalâ€Free Metal–Organic Framework (MOF) Catalyst for the Highly Efficient Conversion of CO ₂ with Propargylic Alcohols. Angewandte Chemie, 2019, 131, 587-591.	1.6	27
18	Trace water accelerating the CO ₂ cycloaddition reaction catalyzed by an indium–organic framework. Inorganic Chemistry Frontiers, 2018, 5, 1694-1699.	3.0	24

Sheng-Li Hou

#	Article	IF	CITATION
19	Eco-friendly co-catalyst-free cycloaddition of CO2 and aziridines activated by a porous MOF catalyst. Science China Chemistry, 2021, 64, 1316-1322.	4.2	23
20	Dual-Selective Catalysis in Dephosphorylation Tuned by Hf ₆ -Containing Metal–Organic Frameworks Mimicking Phosphatase. ACS Central Science, 2021, 7, 831-840.	5.3	17
21	Efficient CO2 electroreduction coupled with semi-dehydrogenation of tetrahydroisoquinoline by MOFs modified electrodes. Journal of Energy Chemistry, 2021, 63, 328-335.	7.1	16
22	A Facile Strategy for Constructing a Carbonâ€Particleâ€Modified Metal–Organic Framework for Enhancing the Efficiency of CO ₂ Electroreduction into Formate. Angewandte Chemie, 2021, 133, 23582-23590.	1.6	16
23	Size-Tunable Ultrafine Pt Nanoparticles in Soluble Metal–Organic Cages: Displaying Highly Stereoselective Hydrogenation of α-Pinene. Chemistry of Materials, 2020, 32, 7063-7069.	3.2	15
24	Recyclable Luminescent Sensor for Detecting Creatinine Based on a Lanthanide–Organic Framework. Inorganic Chemistry, 2022, 61, 9990-9996.	1.9	14
25	Green Conversion of CO ₂ and Propargylamines Triggered by Triply Synergistic Catalytic Effects in Metal–Organic Frameworks. Angewandte Chemie, 2021, 133, 20580-20586.	1.6	11
26	Photocatalytic Hydrogen Evolution Based on Cobalt–Organic Framework with High Water Vapor Adsorption. Inorganic Chemistry, 2021, 60, 1922-1929.	1.9	10
27	Selectively Regulating Lewis Acid–Base Sites in Metal–Organic Frameworks for Achieving Turnâ€On/Off of the Catalytic Activity in Different CO ₂ Reactions. Angewandte Chemie, 2022, 134, .	1.6	6